

A SECURITY ARCHITECTURE
FOR

NET-CENTRIC ENTERPRISE
SERVICES (NCES)

Version 0.3 (Pilot)

Defense Information Systems Agency (DISA)

March 1, 2004

NCES Security Services Architecture

Version 0.3 ii February 20, 2004

Document Change Record

Version Date Description
NCES v0.3 03-Mar-2004 First public release

NCES Security Services Architecture

Version 0.3 iii February 20, 2004

Table of Contents

1. EXECUTIVE SUMMARY ...1

2. NOTATIONS AND TERMINOLOGY ..2
2.1 Notations ...2
2.2 Terminology ..2

3. BACKGROUND ...4
3.1 Service Oriented Architectures ..4
3.2 Net-Centric Enterprise Services (NCES) ..6
3.3 Overview of XML Security Standards...7

4. ARCHITECTURE OVERVIEW ...10
4.1 Security Challenges under SOAs..10
4.2 Summary of Architectural Requirements ..12
4.3 Scope, Assumptions, and Limitations ...14
4.4 Conceptual Enterprise Security Architecture ...15
4.5 The Security CESs ...17

5. THE TRUST MODEL ..23
5.1 The Micro View ...23
5.2 The Macro View ..25

6. SECURITY ARCHITECTURE WITHIN A TRUST DOMAIN28
6.1 Securing the Invocation Path ...28
6.2 Service Chaining ...32

7. AUTHENTICATION..35
7.1 Asserting the Authentication of End Users ...35
7.2 SOAP Message Authentication...37

8. AUTHORIZATION ..42
8.1 Authorization Architecture...42
8.2 Two Approaches for Making Policy Decisions ...44
8.3 Policy Decision Implementation Considerations ..46

9. AUTHORIZATION POLICIES...48
9.1 The RBAC Model...48
9.2 Looking Ahead: the Attribute Based Approach...51

10. OTHER TOPICS...53
10.1 Message Confidentiality...53
10.2 Use of DoD PKI...53
10.3 Beyond Trust Domain Boundaries ...56

11. FUTURE WORK ..58

NCES Security Services Architecture

Version 0.3 iv February 20, 2004

A. MESSAGE EXAMPLES..61
A.1 SAML Assertion Element Created by Portal ..61
A.2 Signed SOAP Request..61
A.3 SAML-P Authorization Decision Query ...63
A.4 SAML-P Authorization Decision Response ..64
A.5 XACML Policy Set...64

B. REFERENCES ...69

NCES Security Services Architecture

Version 0.3 v February 20, 2004

List of Figures

FIGURE 1 - SERVICE ORIENTED ARCHITECTURE..4
FIGURE 2 - UNDERLYING SECURITY TECHNOLOGY STACK ..8
FIGURE 3 - CONCEPTUAL ENTERPRISE SECURITY ARCHITECTURE ...16
FIGURE 4 – THE MICRO VIEW: WITHIN A SINGLE TRUST DOMAIN...24
FIGURE 5 – THE MACRO VIEW: ACROSS TRUST DOMAIN BOUNDARIES26
FIGURE 6 - LOGICAL SECURITY ARCHITECTURE, SINGLE TRUST DOMAIN....................................28
FIGURE 7 - CHAINING OF INBOUND MESSAGE HANDLERS..30
FIGURE 8 - SERVICE CHAINING...33
FIGURE 9 - MESSAGING TERMS ..35
FIGURE 10 - MESSAGE AUTHENTICATION ...38
FIGURE 11 - SIGNED SOAP MESSAGE ..39
FIGURE 12 - AUTHORIZATION ARCHITECTURE ..43
FIGURE 13 - BASIC RBAC MODEL...49
FIGURE 14 - RBAC BASED POLICIES..51

List of Tables

TABLE 1 - CURRENTLY SUPPORTED STANDARDS AND THEIR VERSIONS...9
TABLE 2 - SECURITY CES TAXONOMY...18

NCES Security Services Architecture

Version 0.3 1 February 20, 2004

1. EXECUTIVE SUMMARY 1

The emergence of Web Service technologies has triggered a major paradigm shift in 2
distributed computing: from Distributed Object Architectures (DOAs) to Service 3
Oriented Architectures (SOAs). Within the Department of Defense (DoD) Enterprise 4
there has been a growing need for increased integration and collaboration among 5
“Communities of Interest” (COIs), often across organizational boundaries. The DoD 6
transformation towards Net-Centricity highlights the need even further. A common set 7
of Core Enterprise Services (CESs) represent crucial infrastructure components that 8
support this vision. SOAs are well positioned to become the key technology enabler for 9
Net-Centricity due to their decentralized, loosely coupled, and highly interoperable 10
architecture. Securing a SOA, however, faces new challenges that cannot be fully 11
addressed by existing Information Assurance solutions. This document describes the 12
drivers, challenges, and requirements for securing a SOA in the Net-Centric 13
environment, and proposes a security architecture that meets the unique burden of 14
securing a decentralized system. 15
 16
This document presents the high-level reference architecture, and defines an abstract 17
“Security CES” layer that encapsulates enterprise security functionality such as 18
authorization and credential management. To help secure Net-Centric interactions 19
among enterprise service consumers and providers, the Security CESs themselves are 20
defined as Web Services that are standards-based, platform-independent, and 21
technology-neutral. The document also introduces the concepts of an indirect or 22
“brokered” trust model, and argues that such a trust model is necessary to support an 23
environment involving decentralized, heterogeneous security infrastructure and 24
policies. 25
 26
The architecture is then described in detail, along with guidance for how such an 27
architecture can be constructed using emerging industry standards such as WS-28
Security, SAML, XACML, and XML Digital Signatures. More importantly, this 29
document defines additional processing rules that “profile” these standards for use in a 30
DoD Enterprise environment. These processing rules allow the security architecture to 31
achieve interoperability while leveraging an underlying foundation of DoD Enterprise 32
security infrastructure such as Identity Management and PKI. 33
 34
Just like the Web Service technologies it leverages, the security architecture presented in 35
this document is still in its infancy. Some potential future work items are listed at the 36
end of the document, and it is expected that the scope of this document will grow over 37
time. 38

39

NCES Security Services Architecture

Version 0.3 2 February 20, 2004

2. NOTATIONS AND TERMINOLOGY 39

2.1 Notations 40

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 41
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 42
document are to be interpreted as described in IETF RFC 2119 [RFC 2119]. E.g.: 43

… they MUST only be used where it is actually required for 44
interoperation or to limit behavior which has potential for causing 45
harm (e.g., limiting retransmissions) … 46

These keywords are thus capitalized when used to unambiguously specify 47
requirements over protocol and application features and behavior that affect the 48
interoperability and security of implementations. When these words are not capitalized, 49
they are meant in their natural-language sense. 50
 51
Fixed width texts used for file names, constants, <XML elements>, and code 52
examples. 53
 54

Example code listings appear like this. 55
 56
Italics texts are used for variables and other type of entities that can change. Italics are 57
sometimes also used for emphasized text or annotations. 58
 59
Terms in italic bold face are intended to have the meaning defined in the glossary. 60
 61
Underlined texts are used for URLs. 62
 63
2.2 Terminology 64

The following terms are frequently used in this document and are briefly explained 65
below using commonly accepted definitions in the security literature. The reference 66
section contains a number of security related glossaries that are much more 67
comprehensive [RFC2828] [WS-GLOS]. 68
 69
Identity: A set of attributes that uniquely identifies a system entity such as a person, an 70
organization, a service, or a device. 71

Comment: Note that identities are not just for human users. Resources such as data 72
providers and service providers may also have their own identities. Also note that an 73
entity may have multiple identities (e.g. local, legal, organizational). 74

Identifier: A sufficiently unambiguous reference to an identity of a system entity. 75

Comment: Note the difference between an identity and an identifier. 76

Credential: A.k.a. Authentication Credential, data that is required to demonstrate the 77
possession of something in order to establish a claim. 78

NCES Security Services Architecture

Version 0.3 3 February 20, 2004

Comment: Credentials may be symmetric information (e.g. password, shared secret key, 79
or biometrics) or asymmetric information (e.g. private and public keys). An identity may 80
have more than one set of credentials. For example, a user may have a login/password, a 81
digital certificate, and his/her biometrics as credentials. 82

Principal: A Principal is an entity that has a network identity (see below), that is 83
capable of making decisions, and to which authenticated actions are done on its behalf. 84
A principal may refer to human entities such as an individual user, an organization, or a 85
legal entity; depending on the context it may also refer to non-human system entities 86
such as a Web Service provider. 87

Comment: This document makes a distinction between Principals and Identities. A 88
principal may have multiple local identities in different Administrative Domains. For 89
example, a user principal can have a work account called “JDoe” in his employer’s 90
network, and also a personal account called “John_Doe” issued by his Internet Service 91
Provider (ISP). 92

Please note that this document deliberately chooses not to use the term Subject due to its 93
overloaded meanings in different contexts. 94

Network Identity: The abstraction of the global set of attributes composed from a 95
Principal’s existing accounts. 96

Comment: “Network Identity” and “Principal” are used interchangeably in this 97
document, in that both of them denote an abstract “global identity” that consists of / 98
maps to a “local identity” in a specific security domain. 99

Trust Domain: This document defines a Trust Domain (TD) as a purely logical construct 100
within which a single set of access control policies hold. 101

Comment: This document deliberately chooses not to use the term Security Domain to 102
refer to a Trust Domain, due to its overloaded meanings and the often confusion with 103
Administrative Domains. A Trust Domain has nothing to do with administrative or 104
network security boundaries. In fact, multiple TDs may reside in a single administrative 105
domain. 106

Service Provider: A system entity that serves as a logical “container” of one or more 107
Web Service applications. A service provider may host one or more Web Services, and 108
may consist of one or many physical machines. If necessary, a service provider may be 109
assigned its own network identity and thus be considered a principal. 110

Service Consumer: A system entity that issues service requests and consumes returned 111
information. Within a SOA, a service consumer is usually an application. 112

Comment: A service provider may be a consumer of other service providers. 113

 114
115

NCES Security Services Architecture

Version 0.3 4 February 20, 2004

3. BACKGROUND 115

3.1 Service Oriented Architectures 116

The emergence of Web Service* (WS) technologies has triggered a major paradigm shift 117
in distributed computing. Architectures are quickly moving from DOAs using 118
technologies such as CORBA, DCOM, DCE, and Java RMI, to SOAs using technologies 119
such as SOAP, HTTP and XML. Under a SOA, a set of network-accessible operations 120
and associated resources are abstracted as a “service”. The service is described in a 121
standard fashion, published to a service registry, discovered by a service consumer, and 122
invoked by a service consumer. Figure 1 illustrates the three steps of Publish, Discover 123
and Invoke. 124
 125

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Service Enabled Infrastructure
Publish

Data and applications
available for use, accessible
via services. Metadata added
to services based on
producer’s format.

Service Producer

• Describes content using metadata
• Posts metadata in catalogs for discovery
• Exposes data and applications as services

Discover

Invoke

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

• Searches metadata catalogs to find data
services

• Analyzes metadata search results found
• Pulls selected data based on metadata

understanding

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Data
Services

Transformation
Services

Service Enabled Infrastructure

Security
Services

Monitoring
Services

Service
Registries

Messaging
Services

Messaging
Services

Data
Services

Data
Services

Transformation
Services

Service Enabled Infrastructure
PublishPublish

Data and applications
available for use, accessible
via services. Metadata added
to services based on
producer’s format.

Service Producer

• Describes content using metadata
• Posts metadata in catalogs for discovery
• Exposes data and applications as services

Data and applications
available for use, accessible
via services. Metadata added
to services based on
producer’s format.

Service Producer

• Describes content using metadata
• Posts metadata in catalogs for discovery
• Exposes data and applications as services

DiscoverDiscover

InvokeInvoke

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

• Searches metadata catalogs to find data
services

• Analyzes metadata search results found
• Pulls selected data based on metadata

understanding

Automated search of data services
using metadata. Pulls data of
interest. Based on producer
registered format and definitions,
translates into needed structure.

Service Consumer

• Searches metadata catalogs to find data
services

• Analyzes metadata search results found
• Pulls selected data based on metadata

understanding

 126
Figure 1 - Service Oriented Architecture 127

 128
Three basic standards serve as the foundation of the Web Services protocol “stack”: 129

 130
¾ Simple Object Access Protocol (SOAP) [SOAP] performs the low-level XML 131

communications necessary for transmitting Web Service calls across the network. 132

*This architecture document refers to Web Services (with capital letters) as services using industry-accepted Web Service

technology standards such as SOAP, WSDL, and UDDI, as opposed to general services offered over the Web.

NCES Security Services Architecture

Version 0.3 5 February 20, 2004

SOAP provides a means of XML-based messaging between a service provider 133
and a service consumer. 134
 135

¾ Web Service Definition Language (WSDL) [WSDL] is an XML-based language 136
that defines the functional interfaces for a Web Service. In other words, a WSDL 137
document represents the official “contract” between service providers and their 138
consumers. These WSDL interfaces are described first in abstract message 139
structures, and then bound to a concrete transport protocol and a communication 140
“endpoint”. 141
 142

¾ Universal Discovery, Description, and Integration (UDDI) [UDDI] is an 143
emerging standard for organizing and accessing a service registry (see Figure 1). 144
A service registry serves as the yellow pages of a collection of Web Services, 145
providing mechanisms for a service provider to publish its capabilities and for a 146
service user to discover matching services. 147

 148
A SOA offers several distinct advantages over traditional distributed computing 149
technologies: 150
 151
¾ Maximum Interoperability – The W3C and OASIS, among others, are currently 152

defining Web Service standards that are entirely based on XML. This ensures 153
that the standards are programming language-, platform-, and programming 154
model-neutral. For example, a .NET Web Service client written in the procedural 155
model of Visual Basic can readily invoke an Object-Oriented Web Service hosted 156
by a Java 2 Enterprise Edition (J2EE) server on a Linux machine. 157
 158

¾ Loose Coupling – Web Service standards define the functional interfaces that 159
represent the minimal understanding between service consumer and service 160
provider. Knowledge of the service provider is discovered dynamically from a 161
service registry rather than statically coded in the client program. 162
 163

¾ Ubiquity – Web Service calls are essentially XML messages sent over well-164
understood Internet protocols such as HTTP. These protocols represent the “least 165
common denominator” of network protocol stacks and makes it easier to 166
overcome firewall and infrastructure constraints. Web Services are likely to be 167
the most viable option for inter-agency information sharing among different 168
autonomous networks. 169

 170
The migration toward more agile SOAs is not merely a technology push; there are also a 171
number of key business drivers at work. In e-Business and e-Government alike, there is 172
a growing need for increased integration and collaboration across organizational 173
boundaries. Here are some domain scenarios: 174
 175

NCES Security Services Architecture

Version 0.3 6 February 20, 2004

¾ E-Business / E-Gov Integration – As businesses strive to keep costs down and 176
become more agile in meeting customer demands, it is necessary to have a 177
technology infrastructure that can enable “deep” integration in the supply chain. 178
Within this scenario, complex systems such as Customer Relationship 179
Management (CRM) and financial systems from manufacturers, suppliers, and 180
distributors can retrieve information and conduct business transactions with one 181
another. For example, a business in the market for a product could shop instantly 182
around the globe for suppliers that meet purchase requirements and dynamically 183
negotiate deals. 184
 185

¾ Counter Terrorism – There is a pressing need in the intelligence community to 186
provide a highly scalable system that supports collaboration, analytical 187
reasoning and information sharing among multiple Department of Defense, 188
intelligence and federal agencies. Furthermore, obtaining accurate and timely 189
counter-terrorism intelligence requires processing unprecedented amounts of 190
data, possibly in petabytes, from both classified, unclassified, structured and 191
unstructured sources. There is no single system that can achieve this task and 192
therefore must involve many distributed, decentralized systems. 193
 194

¾ Tactical Warfighting – Similarly, in the defense sector, there is an increasing 195
need for a C4I (Command, Control, Communications, Computers and 196
Intelligence) system that provides a single, integrated ground picture of forces 197
deployed to the theater. Warfighters need access to real-time information and 198
must operate within the communications infrastructure of existing global 199
networks. Intelligent agents, for example, may automatically discovery and 200
correlate data streams relevant to a current tactical position. DoD’s recent Net-201
Centric Enterprise Services (NCES) initiative reflects this vision. 202

 203
It is impossible to adopt one single platform, programming language, or protocol that 204
fulfills the needs of these scenarios. A successful architecture must accommodate 205
heterogeneity, and support interoperability in three dimensions: horizontal (across peer 206
systems), vertical (among different organizational levels) and temporal (along a system’s 207
evolutionary path). The unique capabilities that come with distributed Service Oriented 208
Architectures can successfully balance these competing dimensions. 209
 210
3.2 Net-Centric Enterprise Services (NCES) 211

Net-Centricity is an architectural mindset that values the relevance, timeliness and 212
accessibility of information above all other qualities. A Net-Centric solution makes data 213
immediately available to those that need it, prohibits unauthorized access to protected 214
resources, and allows consumers to discover relevant information assets without pre-215
existing knowledge of their existence. The Defense Information Systems Agency (DISA) 216

NCES Security Services Architecture

Version 0.3 7 February 20, 2004

is currently working to field a set of capabilities that help provide ubiquitous access to 217
reliable, decision-quality information through a net-based Web-Services infrastructure. 218
 219
There are currently nine Net-Centric Enterprise Services (NCES) defined, and each 220
provides a distinct set of capabilities to the network. Infrastructure services such as 221
Security, Storage, and Enterprise Services Management provide foundational 222
capabilities to other services, while end-user services such as Collaboration facilitate 223
direct communication between people in disparate locations. 224
 225
With few exceptions, the services defined under NCES are platform- and 226
implementation-agnostic specifications that abstract underlying solutions. The 227
dichotomy formed by splitting the implementation from the specification allows COTS 228
and GOTS implementations to appear and behave the same. That is, given a sufficiently 229
robust specification it’s possible to build adaptors to current and future technologies 230
without impacting current integrations. From the system perspective, changes in 231
implementation matter little because they are largely invisible. This model allows for 232
Evolution without convolution. 233
 234
Moving toward a specification-driven architecture allows for the commoditization of 235
services defined under NCES. Achieving commoditization allows implementations to 236
be tailored to local environments, allows deployments to be more or less robust based 237
on expected load, and ensures that vendors compete on price, reliability and speed, not 238
features. Net-Centricity within NCES values capabilities over implementations, and 239
provides mechanisms that allow each member of the user community to become a 240
catalyst of change. At the same time, Net-Centric services are reliable, fault-tolerant, 241
secure, and provide unique capabilities that enhance both the structure and substance 242
of the network. 243
 244
3.3 Overview of XML Security Standards 245

This section provides a brief survey of existing security standards for XML-based 246
messaging. The security architecture described in this document will utilize these 247
standards, with the goal of reusing as much industry-defined work as possible. Figure 2 248
below illustrates the relationship and relative positioning of these standards within in 249
the entire security “technology stack” upon which the NCES security architecture is 250
defined. It is worth noting that these standards themselves are not silver bullets for 251
solving every security problem. Under the “defense in depth” principle, true end-to-252
end application security is based upon many layers of technologies, and includes 253
physical and network security as well as message and application level security. A truly 254
secure system contains these levels seamlessly integrated together. 255
 256
 257
 258

NCES Security Services Architecture

Version 0.3 8 February 20, 2004

IPSecIPSec

SSL / TLSSSL / TLS

IPIP

TCPTCP

Physical / LinkPhysical / Link
Hardware Crypto-modulesHardware Crypto-modules

Link EncryptorsLink Encryptors
BiometricsBiometrics

Inline Network EncryptorsInline Network Encryptors

Web Service ApplicationsWeb Service Applications

XMLXML
XML DSIGXML DSIG

SAMLSAML XACMLXACML

SOAPSOAP

XML ENCXML ENC

XKMSXKMS

WS-SecurityWS-Security

WS-PolicyWS-Policy WS-TrustWS-Trust

WS-FederationWS-Federation WS-AuthorizationWS-AuthorizationWS-PrivacyWS-Privacy

WS-SecureConversationWS-SecureConversation

Data Cryptographic
Primitives

Message Security
Framework

Standard Data
Representation

Standard
Application
Messaging
Framework

Application
Message Security

Contexts

Security Infrastructure
Foundation

Standard
Networking

Layers

Common Network
Security

Approaches

Physical
Protection

Service Oriented
Application

Layer

Trust Model Security Services SDKs Security Mgmt NCES Security
Architecture

(Being developed / ratified)

IPSecIPSec

SSL / TLSSSL / TLS

IPIP

TCPTCP

Physical / LinkPhysical / Link
Hardware Crypto-modulesHardware Crypto-modules

Link EncryptorsLink Encryptors
BiometricsBiometrics

Inline Network EncryptorsInline Network Encryptors

Web Service ApplicationsWeb Service Applications

XMLXML
XML DSIGXML DSIG

SAMLSAML XACMLXACML

SOAPSOAP

XML ENCXML ENC

XKMSXKMS

WS-SecurityWS-Security

WS-PolicyWS-Policy WS-TrustWS-Trust

WS-FederationWS-Federation WS-AuthorizationWS-AuthorizationWS-PrivacyWS-Privacy

WS-SecureConversationWS-SecureConversationWS-PolicyWS-Policy WS-TrustWS-Trust

WS-FederationWS-Federation WS-AuthorizationWS-AuthorizationWS-PrivacyWS-Privacy

WS-SecureConversationWS-SecureConversation

Data Cryptographic
Primitives

Message Security
Framework

Standard Data
Representation

Standard
Application
Messaging
Framework

Application
Message Security

Contexts

Security Infrastructure
Foundation

Standard
Networking

Layers

Common Network
Security

Approaches

Physical
Protection

Service Oriented
Application

Layer

Trust Model Security Services SDKs Security Mgmt NCES Security
Architecture

(Being developed / ratified) 259
Figure 2 - Underlying Security Technology Stack 260

 261
¾ WS-Security, short for Web Services Security, is a standard jointly proposed by 262

an industry consortium (IBM, Microsoft, and Verisign) and currently being 263
ratified by OASIS [WSS]. It serves as the foundation to address SOAP-level 264
security issues, with three major propositions: (1) use of security tokens in SOAP 265
headers for user identity and authentication, (2) use of XML-Signature standard 266
for message integrity and authenticity, and (3) use of XML-Encryption for 267
message confidentiality. There are of course many other security requirements 268
that are not yet addressed by WS-Security. WS-Security is only the first in a series 269
of standards proposed by the consortium aimed at providing a broader security 270
framework for Web Services. Additional standards and vendor proposals are 271
forthcoming that address issues such as authorization, privacy, policy, trust, 272
secure conversation, and federation, as shown in Error! Reference source not 273
found.. 274
 275

¾ XML-Signature. A formal Recommendation (i.e. approved standard) from W3C 276
[XMLDSIG], this spec covers the syntax and processing of digitally signing 277
selected elements in an XML document using either symmetric (secret) key or 278
asymmetric (public/private) key cryptography. Such digital signatures help 279
ensure the data integrity of the signed XML elements: any data modifications 280
during message transit are detected in signature verification. 281

NCES Security Services Architecture

Version 0.3 9 February 20, 2004

 282
¾ XML-Encryption [XMLENC] is another W3C Recommendation. This spec 283

defines the syntax and processing rules for encrypting and decrypting selected 284
elements in an XML document for data confidentiality. 285
 286

¾ XML Key Management Specification (XKMS) [XKMS] is a submission to W3C 287
that defines a set of abstract interfaces for the underlying PKI infrastructure. The 288
spec consists of two parts: X-KRSS (XML Key Registration Service Specification) 289
that deals with public key registration and revocation, and X-KISS (XML Key 290
Information Service Specification) that deals with locating and validating keys. 291
 292

¾ Security Assertion Markup Language (SAML). Unlike the W3C specs above, 293
SAML [SAML] is a standard from Organization for the Advancement of 294
Structured Information Standards (OASIS). SAML defines a framework for 295
exchanging security information in XML format. Security information such as 296
authentication artifacts, authorization decisions, and subject attributes are 297
represented in XML constructs called “assertions”, which are issued by SAML 298
Authorities. The SAML spec also defines the protocol, transport bindings, and 299
usage profiles for exchanging the assertions. SAML maps seamlessly to the 300
SOAP transport, and in many areas complements the WS-Security spec (above). 301
 302

¾ XML Access Control Markup Language (XACML). Ratified as an OASIS 303
standard in February 2003 (1.0 version), XACML defines a generic authorization 304
architecture and the constructs for expressing and exchanging access control 305
policy information using XML. Policy constructs include policies, rules, 306
combining algorithms, etc. XACML complements SAML so that not only policy 307
decisions can be exchanged in a standard fashion, but policies themselves as 308
well. 309

 310
Table 1 lists the versions of the specifications supported in this architecture document: 311
 312
 313
 314

315

Specification Version

SOAP 1.1
WSDL 1.1
UDDI 2.0
WS-Interoperability Basic Profile 1.0a
XACML 1.1
SAML 1.1
XML-DSIG W3C Recommendation 2002-02-12
XKMS Not yet supported
WS-Security 1.0 – SOAP Message Security

1.0 – X.509 Token Profile
Draft 04 – SAML Token Profile

Table 1 - Currently Supported Standards and Their Versions

NCES Security Services Architecture

Version 0.3 10 February 20, 2004

4. ARCHITECTURE OVERVIEW 316

4.1 Security Challenges under SOAs 317

The paradigm shift towards service-oriented system collaboration and composition also 318
brings fundamental changes to the approach used to define security architectures. Most 319
security solutions that exist today are based on the assumption that both clients and 320
servers are located on the same physical (e.g. local LAN) or logical (e.g. VPN) network. 321
The architectures generally rely heavily on perimeter-based security such as DMZs, 322
firewalls, and intrusion detection to thwart security threats. Similarly, the security 323
policies that back existing solutions are also to a large extent perimeter-based. For 324
example, obtaining access to an application usually requires creation of a new user 325
account on the machine or network where the application is installed, and includes 326
granting the user physical access to the facility where the machine or network is 327
located. By contrast, application level security is usually regarded not quite as critical as 328
network security and oftentimes is enforced simply by a username and password. 329
 330
Under a SOA, however, such perimeter-based security models are far from adequate. 331
As Section 3.1 describes, the primary goal of a building a SOA is to facilitate Net-332
Centric information sharing and collaboration: 333
 334
¾ Business functionality, previously inaccessible unless (for instance) physically 335

sitting in front of a terminal, will become service-enabled and exposed to 336
external consumers via standard Web Service protocols. 337
 338

¾ Consumers – which may be services themselves – can dynamically discover 339
services and make use of their data in real-time. 340
 341

¾ Services are inherently location independent and not necessarily even bound to a 342
physical location. The network addresses or “endpoints” of services are 343
published in a service registry such as UDDI, and can change over time as 344
services are relocated during normal system evolution or for fail-over reasons 345
during system maintenance. 346
 347

¾ Service consumers and providers may belong to different physical networks or 348
even different organizations. These networks and/or organizations may be 349
governed by entirely different security policies. 350

 351
Therefore, in a Net-Centric environment, the focus on perimeter-based security models 352
must be augmented with an application or service-level view of security. With both 353
models in mind, the emphasis is placed not on physical ownership and control but on 354
network identities, trust, and authorized access to resources by both users and other 355
principals. 356

NCES Security Services Architecture

Version 0.3 11 February 20, 2004

Security within a Net-Centric environment has its own challenges: 357
 358

1. Firewall Limitations – Allowing inbound HTTP access to Web Services opens up 359
servers to potential attack which may not be detectable by conventional firewall 360
products. For example, an ill-intended SOAP message may be constructed to 361
cause internal application buffer overflow while looking completely benign to 362
the firewall and the HTTP server. Recently many new XML firewall products 363
have emerged that attempt to protect Web Services at the SOAP level, but their 364
effectiveness has not been closely studied and the positioning of those products 365
within the entire enterprise security architecture is not yet clear. 366

 367
2. Service-Level Security Semantics – As Section 3.3 describes, most of the 368

standardization efforts have focused on defining the wire formats needed for 369
security information exchange. The standards largely ignore the similar 370
challenge of defining the mechanism by which different parties interface with 371
each other to achieve security goals such as authentication and authorization. 372
For example, SAML defines the XML structures and protocols for sending 373
authentication assertions, but it doesn’t prescribe who should pass what 374
information to whom, when information should be passed, or how such 375
information may be used. 376

 377
3. Interoperability of Security Solutions – Because of the lack of standard profiling 378

at the service interface level, Web Service security products in the market today 379
are not fully interoperable even though they all claim to be compliant with Web 380
Services security standards. Further, many are point solutions that do not meet 381
all requirements of a DoD enterprise security architecture, and are not capable of 382
extending beyond enterprise boundaries. 383

 384
4. Secure Composition and Orchestration – As enterprise Web Services proliferate, 385

there is an increasing need for multiple services to interact among one another 386
within a joint business process or workflow. This situation presents many 387
security challenges. For example, SOAP is not a full-blown messaging protocol 388
and doesn’t have inherent provisions for a service consumer to specify the 389
destination(s) or the “itinerary” of an invocation sequence. As a result, the SOAP 390
message might be replayed to unintended 3rd parties bearing the same operation 391
signature. For more details on this issue, please see the Future Work section 392
towards the end of this document. 393

 394
5. Multiple Security Domains and Classification Levels – Current guard 395

technologies are not yet connection-oriented and must evolve to support XML 396
and SOAP message security. 397

 398

NCES Security Services Architecture

Version 0.3 12 February 20, 2004

6. Security vs. Performance – A PK-enabled security architecture involves many 399
computation-intensive tasks such as message signing, encryption, and certificate 400
validation. Sending a properly signed message may be many times slower than 401
a less secure version, and there is usually a direct inverse relationship between 402
performance and security. Cautious planning and effective optimization 403
techniques are necessary to ensure that a secured SOA environment will meet 404
operational requirements. 405

 406
7. Impacts on Existing Policies and Processes – Current C&A policies generally 407

require identification of system boundaries, whereas in an SOA based network 408
trust relationships are established more dynamically. One possible solution is to 409
define the C&A boundaries at the Web Service interfaces. 410

 411
Defining a service-level security architecture to address these challenges is the focus of 412
this paper. 413
 414
4.2 Summary of Architectural Requirements 415

The primary goal of the security architecture defined in this document is to ensure 416
Enterprise Services (ES) can be invoked securely. As with every mission critical 417
distributed system there is a set of key security requirements that must be met: 418
 419

1. Authentication – Most (if not all) service providers will require that consumers 420
are authenticated before accepting a service request. Service consumers will also 421
need to authenticate service providers when a response is received. Different 422
authentication mechanisms should be supported, and these mechanisms should 423
be configurable and interchangeable according to service-specific requirements. 424
 425

2. Authorization – In addition to authentication of a service consumer, access to a 426
service will also require the consumer to possess certain privileges. These 427
privileges feed an authorization check that is usually based on access control 428
policies – who can access a service and under what conditions, for example. 429
Different models may be used for authorization, such as mandatory or role-430
based access control. The authorization implementation should also be 431
extensible to allow for domain- or COI-specific customizations. 432
 433

3. Confidentiality – Protect the underlying communication transport as well as 434
messages or documents that are carried over the transport so that they cannot be 435
made available to unauthorized parties. Sometimes only a fragment of the 436
message or document (e.g. wrapped within a certain XML tag) may need to be 437
kept confidential. 438
 439

NCES Security Services Architecture

Version 0.3 13 February 20, 2004

4. Data Integrity – Provide protection against unauthorized alteration of messages 440
during transit. 441
 442

5. Non-repudiation – Provide protection against false denial of involvement in a 443
communication. Non-repudiation ensures that a sender cannot deny a message 444
already sent, and a receiver cannot deny a message already received. This is 445
especially important in monetary transactions and security auditing. 446
 447

6. Manageability – The security architecture should also provide management 448
capabilities for the above security functions. These may include, but are not 449
limited to, credential management, user management, and access control policy 450
management. 451
 452

7. Accountability – This includes secure logging and auditing which is also 453
required to support non-repudiation claims. 454

 455
In addition, the following additional requirements are specific to or are also important 456
in a SOA environment: 457
 458

1. Security Across Trust Domains – The architecture must provide a trust model 459
under which Web Service invocations across different trust domains can be 460
secured, just like those within a single trust domain. All basic security 461
requirements mentioned in Section 4.1 apply to cross-trust domain service 462
invocations. Additionally, such invocations must be controlled by the local 463
security policies of participating domains. 464
 465

2. Interoperability – Interoperability is the cornerstone of SOAs, and the security 466
architecture must preserve this to the maximum extent possible. Major security 467
integration points in the architecture – such as those between service consumers 468
and service providers, between service providers and the security infrastructure, 469
and between security infrastructures in different trust domains – must have 470
stable, consistent interfaces based on widely adopted industry and government 471
standards. These interfaces enable each domain or organization to implement its 472
own market-driven solution while maintaining effective interoperability. 473
 474

3. Modeling tailored constraints in security policies. In a traditional security 475
domain, resources and services are often protected by a uniform set of security 476
rules that are not granular enough to meet specific application needs. Under a 477
SOA, service provider requirements may vary in terms of how they need to be 478
protected. For example, one service may require X.509 certificate based 479
authentication whereas another service may only need username / password 480
authentication. Furthermore, because clients that access a resource may or may 481
not be from the local domain, different “strengths” of authentication and access 482

NCES Security Services Architecture

Version 0.3 14 February 20, 2004

control may be required. Consequently, security policies must be expressive and 483
flexible enough to be tailored according to Quality of Protection (QoP) 484
parameters and user attributes. 485
 486

4. Allowing Integration with existing Information Assurance solutions, products, 487
and policies. The SOA-based security architecture does not intend to replace an 488
existing investment in security infrastructure. On the contrary, a flexible IA 489
solution should be designed to leverage existing IT investments without causing 490
any redundant development efforts. Seamless integration with existing security 491
tools and applications also increases the overall stability of the enterprise. 492
 493

5. Securing other infrastructure services within the SOA, such as discovery, 494
messaging, mediation, and service management. 495
 496

6. Unobtrusiveness. The architecture should be unobtrusive to other service 497
implementations. More specifically, to deploy unto the new security architecture, 498
a service provider shall not have to: 499

− Be constrained to use any one particular programming language; 500
− Port an existing service implementation to a specific hardware platform; 501
− Modify an existing implementation against any vendor-specific API 502

interfaces; 503
− Recompile or rebuild existing code sets 504

 505
4.3 Scope, Assumptions, and Limitations 506

The following assumptions and limitations have been identified for the NCES Security 507
Services 0.3 Release: 508
 509

1. The security architecture does NOT yet cover the implementation of Identity 510
Management. Rather, it aims to be flexible in this area so that it may leverage 511
and integrate with existing and / or emerging DoD identity management 512
systems. 513
 514

2. The security architecture will support integration of digital certificates issued 515
from the DoD PKI. For this release, the architecture will be based on explicit 516
trust of the Certification Validation Service, which serves as a domain’s trust 517
anchor for establishing the authenticity and validity of certificates. Please refer 518
to Section 10.2 for detailed discussions on this approach and its alternatives. 519
 520

3. The architecture currently does NOT yet address “edge” security such as end-521
user authentication or end-user Single Sign On (SSO). The ultimate SSO 522
experience, from the end user’s perspective, involves authenticating not just to 523
Web Services, but also to the network, the operating system, and/or any Identity 524

NCES Security Services Architecture

Version 0.3 15 February 20, 2004

Management system in use in the organization. This is beyond the scope of this 525
document and will be addressed in the near future. 526
 527

4. The architecture currently does NOT support establishment and protection of 528
security contexts that span across multiple Web Services. 529
 530

5. The architecture currently does NOT address message level security across 531
multiple security levels (MSL) or in a multi-level security (MLS) environment. 532
 533

6. This architecture does NOT yet define enterprise audit and logging functionality 534
and related service specifications. They will be provided in the near future. 535
 536

7. The architecture currently does NOT directly address content or data level 537
access control, such as enforcing proper access control over data contents and 538
information products contained as a SOAP message “payload”. For now this is 539
considered the responsibility of the service provider. However, the NCES 540
Security Services do provide support for managing and accessing security 541
policies that may be leveraged for this task. 542
 543

8. The architecture assumes sufficient protection of physical security infrastructure 544
components. Security services such as the policy and credential management 545
services (as will be introduced in Section 4.5), as well as security repositories 546
such as the policy store should be protected using well-established policies and 547
practices for securing access to physical systems. 548
 549

9. Web Services and the security infrastructure components (e.g., Policy Decision 550
Points) should also be sufficiently protected from format and data attacks. Some 551
of these attacks may be addressed by existing COTS products such as XML 552
firewalls, while others involve conformance to good security programming 553
practices such as preventing buffer overflows. The architecture document does 554
not yet address the means of performing these functions. 555

 556
4.4 Conceptual Enterprise Security Architecture 557

Figure 3 presents a very high level illustration of the security architecture. The diagram 558
reflects the following concepts: 559
 560

1. Service consumers and providers (shown on the left side of the diagram) 561
exchange security related information (e.g. certificates) with each other through 562
open security standards such as WS-Security and SAML. 563

2. The underlying security infrastructure is exposed as Web Services (shown in the 564
middle section of the diagram). This document defines a set of Security CES 565

NCES Security Services Architecture

Version 0.3 16 February 20, 2004

using technology-agnostic WSDL interfaces. Security functionality such as 566
credential and policy management are themselves wrapped as Web Services. 567

3. Instead of attempting to implement all security infrastructure components from 568
scratch, the security services leverage existing enterprise security infrastructure 569
(shown on the right side of the diagram) such as identity management, and PKI 570
through an integration backplane. 571

 572

.

.

.

Data Service
Providers

Policy
Services

App Service
Providers

Thick
Clients

.

.

.

Thin
Clients

St
an

da
rd

-b
as

ed
 S

ec
ur

ity
 In

fo
 E

xc
ha

ng
e

Pl
at

fo
rm

(W
S-

Se
cu

rit
y

/ S
A

M
L

/ X
K

M
S)

Key
Mgmt

Services

Attribute
Mgmt

Services

Monitoring &
Management

In
te

gr
at

io
n

B
ac

k-
pl

an
e

User / Resource
Directories

Guards
Other

Security
Domains

Security Policies

PKI
Infrastructure

Authentication
Mechanisms

9Web Portals
9 CAC
9 Biometrics, …

User / Resource
Directories

Guards
Other

Security
Domains

Security Policies

PKI
Infrastructure

Authentication
Mechanisms

9Web Portals
9 CAC
9 Biometrics, …

Domain
Federation
Services

Auditing
Services

Security
Context
Services

Security CES

 573
Figure 3 - Conceptual Enterprise Security Architecture 574

 575
The security architecture provides many important benefits: 576
 577
¾ Efficiency. A set of security services along with their backend infrastructures are 578

responsible for supporting application level security, so that service providers 579
themselves do not have to roll their own enterprise security management. This is 580
not only efficient but also significantly reduces operational overhead. (unless the 581
provider has application-specific security requirements which can be built on top 582
of the Security CESs). 583

¾ Plug-and-play. The security service abstraction layer is able to provide true loose 584
coupling among applications and enhance overall system stability. As can be 585
seen from the diagram, this is reflected in the plug and play capability for both 586
security users and security infrastructure providers: On the left hand side of 587
Figure 3, service providers and consumers can easily plug in to the security 588

NCES Security Services Architecture

Version 0.3 17 February 20, 2004

framework because all interfaces are fully standards based. The right hand side 589
of the diagram details how security developers can swap security 590
implementations without affecting the Web Services and end users. These 591
changes are possible because the security service interfaces in the middle remain 592
the same. 593

¾ Cross-domain interoperability. The security architecture is standards-based, 594
which enables secure collaboration and information sharing across trust 595
domains. As long as all trust domains conform to the same set of security service 596
specifications they are able to exchange security claims, entity attributes, and 597
access control policies. This level of cross-domain interoperability is critical for a 598
Net-Centric environment. 599

¾ Future-proof. The architecture is well positioned for future evolution. The 600
security service specifications are platform-independent, technology-agnostic, 601
and vendor-neutral. This not only promotes reuse of existing infrastructures but 602
also allows for market-driven solutions and selection of best-of-breed products 603
without committing to vendor lock-in. 604

 605
4.5 The Security CESs 606

The Security CESs, depicted in the middle box of Figure 3, consist of a number of 607
functional service groups, each of which may include one or more service interfaces 608
that perform specific tasks. In the current release, only the very basic interfaces that 609
support core Web Service security capabilities are defined; more services will be added 610
and existing services will be expanded in future versions to provide richer and more 611
sophisticated features. The taxonomy or functional breakdown of the Security CES is 612
shown in the table below: 613
 614
Service Group Current Services Future Services*
Policy Services � Policy Decision Service

� Policy Retrieval Service
� Policy Administration Service

� Policy Subscription Service

Credential Management
Services

� Certificate Validation Service

� Certificate Registration Service
� Certificate Retrieval Service

Attribute Services � Principal Attribute Service � Resource Attribute Service
� Environment Attribute Service

Trust Domain Federation
Services

None � Domain Inquiry Service
� Domain Registration Service

Security Context Services None � Security Context Service

NCES Security Services Architecture

Version 0.3 18 February 20, 2004

Service Group Current Services Future Services*

Auditing and Logging
Services

None � Secure Logging Service
� Auditing Service

Table 2 - Security CES Taxonomy 615
* Note the future service offerings and their names are subject to change 616
 617
In the following sub-sections, the service groups and their current member services are 618
briefly described. Detailed technical specifications of the above services will be defined 619
in a separate document. 620
 621
4.5.1 Policy Services 622

 623
This service group provides policy-based authorization and access control for Web 624
Services and system resources. The current services include: 625
 626
¾ Policy Decision Service – serves as a SAML authorization authority for service 627

providers that choose to use an external Policy Decision Point (PDP). This 628
service accepts authorization queries and returns authorization decision 629
assertions, all of which conform to the SAML Protocol. The heart of the service is 630
a policy evaluation engine, which applies policies based on a variety of inputs 631
such as the target resource, the action or operation requested, identity of the 632
requester, etc. 633

¾ Policy Retrieval Service – exposes security policies in XACML format. This 634
service can allow service providers to retrieve policies for their resources, 635
especially when they choose to implement their own PDP logic (see Section 8.2 636
for details). This service can also be used by applications other than Web 637
Services to retrieve stored resource policies (e.g. access control over portlets in a 638
portal server). 639

¾ Policy Administration Service – This service uses XACML as a standard policy 640
exchange format and can be used by management applications to compose, 641
modify, and control authorization policies. Depending on the access control 642
model adopted in the domain, this service’s functionality may include Create, 643
Read, Update, Delete (CRUD) operations for policy rules, rule sets, roles, 644
permissions, security categories and compartment labels, among others. Section 645
9 describes the recommended RBAC model upon which the current reference 646
implementation is based. 647

 648
In the near future, a Policy Subscription Service will also be defined, along with 649
related callback interfaces that allow interested parties to subscribe to and thereby 650
receive real-time notifications on policy changes. 651

NCES Security Services Architecture

Version 0.3 19 February 20, 2004

 652
4.5.2 Credential Management Services 653

 654
This group of services provides access to the underlying DoD PKI infrastructure. 655
The group is envisioned to offer a subset of XKMS functionality, starting with the X-656
KISS spec and potentially moving into X-KRSS as well. Currently only the following 657
service is defined: 658
 659
¾ Certificate Validation Service (CVS) – This service allows clients to delegate part 660

or all certificate validation tasks, which is especially useful when the client side 661
doesn’t have the capability for PKI processing. The service corresponds to a “Tier 662
2 Validation Service” as defined in the XKMS spec , and shields client 663
applications from such PKI complexities as X.509v3 certificate syntax processing 664
(e.g. expiration), revocation status checking, and certificate path validation. 665
Moreover, offloading validation operations allows it to be done in a more 666
efficient and optimized fashion. The architecture allows a service provider to use 667
the Certificate Validation Service (CVS) to only perform revocation status 668
checking, in which case the CVS functions similar to a PKIX Online Certificate 669
Status Protocol (OCSP) responder; OR to offload the entire certification 670
validation to CVS. This service, as well as the underlying DoD PKI functionality, 671
is discussed in much greater detail in Section 10.2. 672

 673
In the future the following additional services could potentially be provided: 674
 675

¾ Certificate Registration Service. Web Service providers and consumers require 676
public key certificates to perform digital signature and encryption operations 677
with other clients. If a client generates its own public/private key pair, it needs 678
to request a certificate for the public key from the DoD PKI. The Certificate 679
Registration Service would use the XKMS XML Key Registration Service 680
Specification (X-KRSS) “register” service as the interface presented to Web Service 681
clients for public key certificate request and response. The X-KRSS “register 682
request” message contains the identity and associated public key of the certificate 683
being requested, and a proof of possession element (i.e., proof that the certificate 684
requester is the actual holder of the private key corresponding to the public key 685
in the request). The Certificate Registration Service translates the information 686
contained in the X-KRSS register request to the certificate request format(s) used 687
by the DoD PKI. The X-KRSS “register response” message contains the resultant 688
X.509 public key certificate. 689

¾ Certificate Retrieval Service. Web Service providers and consumers must have 690
the capability to obtain the public key certificates of users and other Web 691
Services clients for the purposes of authentication verification, digital signature 692
verification, and public key encryption operations. In some cases, the 693
originator’s public key certificates are included in XML messages inbound to the 694

NCES Security Services Architecture

Version 0.3 20 February 20, 2004

Web Services client. In other cases the certificates are not included in the inbound 695
messages and the Web Service clients must retrieve them from the DoD PKI 696
directory system. The Certificate Retrieval Service would use the XKMS XML 697
Key Information Service Specification (X-KISS) “locate” service as the interface 698
presented to Web Services clients for public key certificate retrieval. The X-KISS 699
“locate request” message contains the identity of the public key certificate being 700
sought. The Certificate Retrieval Service interfaces with a DoD PKI directory 701
system (e.g., the DoD Global Directory Service (GDS)), to locate and retrieve the 702
requested certificate. The X-KISS “locate response” message contains the 703
requested X.509 certificate, if it is found in the DoD PKI directory system. Note 704
that the Certificate Retrieval Service would not check the revocation status or 705
validity of the certificate retrieved; it would simply return a certificate if one is 706
successfully located in the directory. 707

 708
4.5.3 Attribute Services 709

 710
In order to support policy-based decisions, various attributes are needed. This 711
includes those of the principals, the system resources, and the application 712
environment. This service group provides standard access mechanisms for such 713
attributes, and defines how attribute queries are returned as SAML attribute 714
assertions. The request-response mechanism is also based on the standard SAML 715
Protocol. A Principal Attribute Service is currently defined: 716

 717
¾ Principal Attribute Service – provides query and retrieval interfaces to access 718

attributes for principals, which may be individuals or even organizations. The 719
attribute taxonomy or “schema” is not defined by the service, but rather by the 720
underlying attribute authorities (e.g. identity stores). These attributes are 721
retrieved upon request and provided as SAML assertions that may be used as 722
inputs to the policy decision logic. Currently, principal attributes are primarily 723
managed by existing Identity Management systems and then stored in various 724
directories. Therefore this service provides just the “read” functionality to obtain 725
those stored attributes in an assertion that binds them with the principal’s 726
identity. 727
 728
In future versions of this service, additional sources of principal attributes will be 729
considered, and mechanisms will be provided to restrict access to sensitive 730
attributes. 731

 732
In the near future, a Resource Attribute Service and potentially an Environment 733
Attribute Service will also be defined for retrieving resource and environment 734
attributes, respectively. When it becomes necessary to actively manage those 735
attributes, a set of Attribute Administration Services providing the complete CRUD 736
operations will be defined as well. 737

NCES Security Services Architecture

Version 0.3 21 February 20, 2004

 738
4.5.4 Trust Domain Federation Services 739

 740
The Trust Domain Federation Services is responsible for managing a trust domain’s 741
trust relationships with other domains. Its interfaces may include registering and 742
deregistering other domains as trusted parties, and inquiring about established trust 743
relationships. 744
 745
These services will be defined in future versions of the architecture. 746

 747
4.5.5 Security Context Services 748

 749
These services provide mechanisms for sharing security contexts across multiple Web 750
Services. Such contexts are necessary in a dynamic SOA environment where 751
indirect or brokered trust relationships abound. For example, when service A 752
invokes service B on an end-user’s behalf (see Section 6 for detail on the service 753
chaining scenario), a common security context can help establish a boundary for this 754
unit of work so that, for instance, service A cannot forward the request to an 755
unintended service C even if A possesses a valid user assertion. 756
 757
In an enterprise service environment, security contexts are important in addressing 758
service orchestrations and workflows. They may also help improve efficiency 759
especially in interactive scenarios. For example, results of certain authentication and 760
authorization steps may be performed only once for a series of consumer-provider 761
interactions within a common security context. 762
 763
The Security Context Services will be defined in the future. Currently there are 764
standard proposals such as WS-Trust, WS-SecureConversation, and WS-765
Coordination that address this topic. Future service specifications will consider 766
conformance to them once they become approved. 767

 768
4.5.6 Auditing and Logging Services 769

 770
Enterprise auditing is also an important requirement for the security architecture. 771
Two pieces of functionality need to be provided: recording the service level 772
activities (logging), and identifying anomalies (such as access violations or attacks) 773
from those records. Currently the service level logging are performed locally by 774
SDKs (see Section 6.1 for details) deployed at service consumers and providers. The 775
logs include: 776
 777
¾ Outbound message information (message ID, sending timestamp, host, target 778

service, etc.) 779
¾ Inbound message information (message ID, receiving timestamp, etc.) 780
¾ Message signature verification (success / faults) 781

NCES Security Services Architecture

Version 0.3 22 February 20, 2004

¾ Certificate validation and status checking results (success / faults) 782
¾ Policy decision results (permit / deny / indeterminate) 783
¾ Invocation status (resource, action, success / faults) 784
 785
In the near future, service interfaces will be defined for remote logging and auditing. 786

 787
To reiterate, the service interfaces defined by this architecture are specifications, not 788
implementations. The actual implementations may utilize best-of-breed COTS and 789
GOTS technologies and may vary in different IT environments, but the specifications 790
will remain stable and interoperable. Going forward it is envisioned that the 791
specifications will be driven by the collective efforts of various NCES initiatives and 792
their requirements, while at the same time reflecting current industry best practices. 793
 794

795

NCES Security Services Architecture

Version 0.3 23 February 20, 2004

5. THE TRUST MODEL 795

5.1 The Micro View 796

The security architecture defined in this document consists of two logical components: 797
 798

1) A trust model under which Web Service consumers and providers interact with 799
one another; 800

2) A set of security Core Enterprise Services that provide the functionality 801
necessary to support the model and are based on open XML security standards. 802
These services were defined in the previous section. 803

 804
This section introduces the basic trust model that serves as the foundation of the NCES 805
security architecture. It is presented in a “bottom-up” approach: We start with the 806
“micro” view by looking at the trust model and associated Security Services in a single 807
Trust Domain; then we zoom out to the “macro” view, describing how the model and 808
supporting services would look when multiple Trust Domains are involved. 809
 810
Under the basic model, a Trust Domain consists of a “triad” of one or more Web 811
Service Providers, Service Consumers, and a set of Security CESs, as shown in Figure 812
4 below. As defined previously, a Web Service Provider may provide a collection of 813
multiple Web Services, hosted together for a common business purpose. The provider 814
may be physically located on one or more server machines. The diagram shows two 815
kinds of Web Service consumers: 816
 817
¾ “Edge” applications, which provide the presentation layer and user interaction 818

logic (often web-based, but does not have to be), and serve as entry points of end 819
users for accessing the service layer. The edge applications initiate service 820
requests on behalf of end users. As mentioned in the assumptions, this service 821
level security architecture does not focus on the security between individual 822
users and edge applications. The mechanism, context and strength of edge 823
security, however, must be captured and propagated for downstream policy 824
decisions, as discussed in later sections. 825

¾ In addition, a service provider may in turn be a consumer of other Web Services. 826
This is often seen in service composition and workflow scenarios. 827

 828

NCES Security Services Architecture

Version 0.3 24 February 20, 2004

Trust DomainTrust Domain

Web
Service
Provider

Web
Service
Provider

Web
Service
Provider

O
th

er
 T

ru
st

 D
om

ai
ns

Edge
Applications

Security CES

Policy
Mgmt

Service

Policy
Decision
Service

…End Users

Trust DomainTrust Domain

Web
Service
Provider

Web
Service
Provider

Web
Service
Provider

O
th

er
 T

ru
st

 D
om

ai
ns

Edge
Applications

Security CES

Policy
Mgmt

Service

Policy
Decision
Service

…
Policy
Mgmt

Service

Policy
Mgmt

Service

Policy
Decision
Service

Policy
Decision
Service

……End Users

 829
Figure 4 – The Micro View: Within a Single Trust Domain 830

 831
This diagram reflects the concept of Indirect, or Brokered Trust: one party trusts a second 832
party who, in turn, trusts or vouches for, a third party [WST]. Furthermore, instead of 833
having Web Service providers themselves authorize users and control their access (i.e. 834
the Direct Trust model), such responsibilities are assisted and sometimes taken over by 835
the Security infrastructure and related CESs. 836
 837
The brokered trust model has some obvious benefits when compared with the direct 838
trust model: 839
 840
¾ It’s non-invasive because service providers do not have to bear the burden of 841

implementing security enforcement logic and managing security policies; 842
¾ Service providers can, on the end user’s behalf, serve as active intermediaries or 843

“brokers” of information offered by other services, thereby enabling “power to 844
the edge”. 845

¾ Because brokered trust relationships are more flexible and more dynamic, the 846
architecture is more resilient and able to quickly adapt to new missions and new 847
business requirements, making it well suited for the dynamic Net-Centric 848
environment. 849

 850
Section 6 describes this security model within a single trust domain in much greater 851
technical detail. 852
 853

NCES Security Services Architecture

Version 0.3 25 February 20, 2004

5.2 The Macro View 854

Earlier in the document a Trust Domain was defined as a purely logical realm that 855
contains a set of system entities that are governed by a set of common security policies. 856
The delineation of a (logical) trust domain boundary really depends on the extent of the 857
policies; it may or may not coincide with organizational network boundaries (e.g. 858
security enclaves). Just as policies may be defined at different organizational levels, 859
trust domains may also be created at different levels or scales. In addition to the DoD 860
Enterprise Domain that is the primary focus of this architecture, there may also be 861
smaller domains that could benefit from an approach such as this. Examples of such 862
domains include: 863
 864
¾ A local trust domain containing resources and services controlled under the 865

discretion of an individual user, located on the user’s PC; 866
¾ An enclave-wide trust domain containing resources and services in a security 867

enclave; 868
¾ An agency-wide trust domain that coincides with the administrative domain of a 869

DoD agency or other type of office. For example, the Defense Information 870
Systems Agency (DISA) may have its own trust domain; 871

¾ A DoD Enterprise domain for all DoD Enterprise Services; 872
¾ A Community of Interest (COI) domain that encompasses multiple organizations 873

collaborating with one another sharing a common interest. Examples may 874
include an Intelligence Community (IC) domain, a Command and Control (C2) 875
domain, and so on. A COI trust domain might in fact overlap with other trust 876
domains. 877

 878
From the “macro” view, the architecture can be summarized (rather informally) as 879
follows: 880
 881

1) The security architecture consists of multiple associated trust domains at 882
multiple levels. A trust domain may have peers and /or may join a “parent” 883
domain; 884

2) Within a trust domain, the local security policies control access to local resources 885
by both local principals and principals from other trust domains; 886

3) Trust domains may overlap one another. In this case, a resource may be 887
governed by different policies from more than one domain depending on the 888
service invocation context. 889

 890
The model is conceptually depicted in the diagram in Figure 5. 891
 892

NCES Security Services Architecture

Version 0.3 26 February 20, 2004

Org. / Community
Trust Domain

Local / Personal
Trust Domain

Security CES
Provider

Web Service
ProviderLEGEND

COI

 893
Figure 5 – The Macro View: Across Trust Domain Boundaries 894

 895
Although the diagram doesn’t reveal many of the technical details, it does manifest 896
some of the important design principles outlined for cross-trust domain security and 897
trust: 898
 899
¾ Decentralized trust domains – In a large-scale distributed computing 900

environment such as the DoD Enterprise, it is extremely difficult to set up a 901
single centralized security management system. Although enterprise security is 902
important and necessary, it can become too resource-intensive to build and 903
maintain if it tries to satisfy all the non-enterprise information assurance needs. 904
These local-, agency-, or COI-level needs tend to vary significantly according to 905
different mission requirements. Furthermore, when it comes to collaboration 906
involving multiple autonomous organizations, creating a centralized system is 907
simply not possible because each organization may be required to oversee 908
certain information assets under existing laws and regulations. In light of this, 909
the security architecture defined in this paper proposes a trust model that is 910
enterprise-strength and yet decentralized based on network identities and 911
brokered trust. 912

 913
¾ Support for Peer-to-Peer (P2P) horizontal integration – With dramatic advances 914

in hardware technologies, more and more computing power is now “on the 915
edge”, and users are increasingly becoming both consumers and producers of 916
data. Consequently, the proposed architecture allows service-level peer-to-peer 917
interactions across trust domains (in contrast to a “hub-and-spoke” model) to 918
facilitate horizontal information integration under the Task, Post, Process, Use 919

NCES Security Services Architecture

Version 0.3 27 February 20, 2004

(TPPU) paradigm. For example, several Web Services from different 920
organizations may join a COI and work together in enhancing target tracking 921
data for better situational awareness. Note that such interactions will of course 922
be subject to enterprise security policies as well as domain-specific constraints. 923

 924
¾ Delegation of authority for increased manageability – In addition to horizontal 925

integration, the architecture also supports seamless vertical integration. As 926
already mentioned, in the DoD Enterprise with potentially millions of users and 927
millions more resources, having a central authorization authority is too inflexible 928
and simply won’t scale. With a model of multi-level trust domains, policy 929
management on the resources is delegated down to the appropriate level where 930
the resource is located and owned, from communities to organizations or even to 931
individuals, effectively optimizing the management span at each level. The 932
enterprise domain can then focus on managing critical, enterprise-wide resources 933
and services, while leaving other entities to be managed by lower-level domains. 934
The delegation happens in the other direction as well: policy decisions that are 935
beyond the discretion of the local trust domain (e.g. granting access to a principal 936
from an unrecognized trust domain), can be passed on to other authorities (e.g. 937
the parent trust domain or a COI authority). 938

 939
¾ Self-similarity – As shown in Figure 5, at different scales, the trust domains 940

interact with one anther in basically the same fashion. In fact, the same set of 941
NCES Security Services are used at every domain level. In other words, the 942
architecture exhibits “self-similar” (a.k.a. “fractal”) behavior, which bears this 943
important characteristic: To design efficient models for services at various scales of the 944
network, it is often sufficient to understand the behavior and characteristics at a fairly 945
simple scale level. The benefit of this behavior is therefore two-pronged: it gives 946
the architecture infinite scalability yet also contains its complexity. It has been 947
argued that the success of the World Wide Web is in part due to the pervasive 948
self-similarity exhibited in its usage behavior [SIMWEB]. 949

 950
In this release a focus is placed on the intra-trust domain aspects of the security 951
architecture. Technical details of the cross-trust domain aspects will be covered in 952
future versions of this document. 953

954

NCES Security Services Architecture

Version 0.3 28 February 20, 2004

6. SECURITY ARCHITECTURE WITHIN A TRUST DOMAIN 954

The trust model introduced in the previous section was purposely technology-agnostic: 955
There was no mention of any specific wire protocols, interfaces, or data models, except 956
that everything will be Web Services based. Starting in this section we begin filling in 957
the semantic and syntactical details, taking advantage of industry standards from the 958
technology stack in Figure 2 as much as possible. Over time, these standards will evolve 959
and new standards will continue to emerge, but the conceptual architecture is 960
inherently stable and will remain the same. 961
 962
6.1 Securing the Invocation Path 963

 964

Edge ApplicationEdge Application

W
SS

Security CESSecurity CES

Certificate
Validation

Service

Policy
Retrieval

Service

SOAP
Client

SOAP
Client

M
sg

H
an

dl
er

s

NCES SDK

1

2-a
2-b

3

7

Web Service ProviderWeb Service Provider

Web
Service

Web
Service

Web
Service

Web
Service

M
es

sa
ge

 H
an

dl
er

s
(in

)

M
es

sa
ge

 H
an

dl
er

s
(o

ut
)

5

NCES SDK

Policy
Admin.
Service

XKMS

Management
Console

Policy
Decision
Service

Ed
ge

 U
se

r
Au

th
en

tic
at

io
n

Identity
Store

Identity
Store

Key StoreKey Store
Key StoreKey Store

2-c

2-d

Key StoreKey Store

SAML-P

Policy
Store

Policy
Store

XACML
3-alt.

CRLCRL

6

8

4

0

Principal
Attribute
Service

Principal
Attribute
Service

Invocation Path “Out-of-band” Calls Signed MessageLEGEND

Edge ApplicationEdge Application

W
SS

Security CESSecurity CES

Certificate
Validation

Service

Certificate
Validation

Service

Policy
Retrieval

Service

Policy
Retrieval

Service

SOAP
Client

SOAP
Client

M
sg

H
an

dl
er

s

NCES SDK

1

2-a
2-b

3

7

Web Service ProviderWeb Service Provider

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

M
es

sa
ge

 H
an

dl
er

s
(in

)

M
es

sa
ge

 H
an

dl
er

s
(o

ut
)

5

NCES SDK

Policy
Admin.
Service

Policy
Admin.
Service

XKMS

Management
Console

Policy
Decision
Service

Policy
Decision
Service

Ed
ge

 U
se

r
Au

th
en

tic
at

io
n

Identity
Store

Identity
Store

Key StoreKey Store
Key StoreKey Store

2-c

2-d

Key StoreKey Store

SAML-P

Policy
Store

Policy
Store

XACML
3-alt.

CRLCRL

6

8

4

0

Principal
Attribute
Service

Principal
Attribute
Service

Principal
Attribute
Service

Principal
Attribute
Service

Invocation Path “Out-of-band” Calls Signed MessageLEGEND Invocation Path “Out-of-band” Calls Signed MessageLEGEND
 965

Figure 6 - Logical Security Architecture, Single Trust Domain 966

 967
Figure 6 illustrates the logical security architecture using a typical scenario involving an 968
edge application (e.g. a web portal) acting as a service consumer that invokes and 969
consumes a Web Service provider. 970
 971

NCES Security Services Architecture

Version 0.3 29 February 20, 2004

In addition to the Security CESs, the diagram introduces some additional components 972
involved in the security architecture: 973
 974
¾ For service providers and consumers, an NCES Service Development Kit (SDK) 975

is typically deployed along with the application to facilitate interactions with 976
NCES Core Enterprise Services (which includes security). A reference 977
implementation of the SDK is being provided along with the Security CES, but 978
additional implementations that leverage the same architecture may be built in 979
the future. 980
It is important to note that SDKs are platform- and technology-specific tools that are only 981
provided as developer aids, so that access to the standard Security CES interfaces may be 982
rapidly enabled. They are not an architecture component per se, nor should they be 983
treated as standards. To achieve true Net-Centricity, applications should only rely 984
on the Web Service standards, Security CES WSDL interfaces, and the processing 985
rules as outlined in this document. In fact, it is perfectly possible for a service 986
provider to implement its own security logic that is compliant to the security 987
architecture without using a third-party SDK. 988

¾ The security part of the SDK also includes a set of SOAP Message Handlers, 989
which can “intercept” inbound and outbound* SOAP messages at runtime and 990
apply security related processing in a way that is transparent to application logic. 991
Multiple message handlers can be “chained” together and can be configured at 992
deployment time, which enables flexible and extensible security configurations. 993
For example, an auditing handler may be added in front of the authentication 994
and policy enforcement handlers, as illustrated in Figure 7: 995

 996

* Note that “inbound” and “outbound” are relative terms. The same SOAP request is an outbound message to the service

consumer but an inbound message to the service provider. Because a service provider can also be a consumer to other
services, the SDK includes both inbound and outbound message handlers.

NCES Security Services Architecture

Version 0.3 30 February 20, 2004

Service ProviderService Provider

Web
Service

Web
Service

Web
Service

Web
Service

M
es

sa
ge

Au
th

en
tic

at
io

n
H

an
dl

er

M
es

sa
ge

Au
th

en
tic

at
io

n
H

an
dl

er

Au
di

tin
g

H
an

dl
er

Au
di

tin
g

H
an

dl
er

……

SOAP
Request

SOAP
Response

Po
lic

y
En

fo
rc

em
en

t
H

an
dl

er

Po
lic

y
En

fo
rc

em
en

t
H

an
dl

er

Service ProviderService Provider

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

M
es

sa
ge

Au
th

en
tic

at
io

n
H

an
dl

er

M
es

sa
ge

Au
th

en
tic

at
io

n
H

an
dl

er

Au
di

tin
g

H
an

dl
er

Au
di

tin
g

H
an

dl
er

……

SOAP
Request

SOAP
Response

Po
lic

y
En

fo
rc

em
en

t
H

an
dl

er

Po
lic

y
En

fo
rc

em
en

t
H

an
dl

er

 997
Figure 7 - Chaining of Inbound Message Handlers 998

 999
Note that, although the message handler notion coincides with those in JAX-RPC based 1000
toolkits, we treat it here as a pure logical concept, not an implementation technique. 1001
Depending on the physical system architecture, the handler may map to a software 1002
component within the Web Service runtime, or a standalone application by itself. 1003

¾ The SDK may also leverage a key store for PKI based message signing and 1004
validation purposes. The key store is used to store the private key(s) and trusted 1005
anchor certificates (e.g. DoD PKI CAs and CVS certificates). The SDK can be 1006
configured to work with different key stores (software or hardware) and 1007
different underlying cryptographic providers. 1008

 1009
Figure 7 also shows the logical sequence of a properly secured Web Service invocation. 1010
After the user authenticated, the edge application initiates the Web Service request on 1011
the user’s behalf. The service invocation involves the following steps, corresponding to 1012
the numbers marked in Figure 6: 1013
 1014

Step 0. The end user is authenticated, and a SAML assertion is produced by the 1015
edge application*. See section 7.1 for more details of this step. 1016

Step 1. The edge application issues a Web Service request in the form of a regular 1017
SOAP message. The message is intercepted by an outbound message 1018
handler in the NCES SDK; 1019

* Note that in reality, Step 0 i.e. edge user authentication may have happened some time before the initiation of the Web Service

request and that the user is often given a valid session for a limited period. In this case it is recommended that a SAML
assertion construct is generated per user session and cached for use by all service requests initiated from this session,
however this is an implementation issue that is up to the edge application.

NCES Security Services Architecture

Version 0.3 31 February 20, 2004

Step 2. Signed SOAP request is sent from client to server, using WSS and XML-1020
DSIG protocols as prescribed in Section 7.2. This step can be further broken 1021
down into the following: 1022

 1023

2-a. The outbound message handler on the client-side signs the SOAP 1024
request using the application’s private key. The digital signature not 1025
only serves as the “proof of possession” of the private key which 1026
ensures message authenticity, but also protects the message integrity 1027
so that any tampering in transit would be detected; 1028

2-b. The SOAP request is sent to the target service provider using standard 1029
Internet protocols (e.g. HTTP); 1030

2-c. An inbound message handler on the server side intercepts the SOAP 1031
request, then verifies the digital signature contained in the message. 1032
The handler also validates the sender’s PKI certificate to make sure it’s 1033
authentic*; 1034

2-d. The message handler further checks the status of the sender’s 1035
certificate against the Certificate Validation Service, making sure the 1036
certificate is not revoked. 1037

 1038
In addition to the above steps, the handler in fact performs additional 1039
checks such as detecting replay. Section 7.2 describes message level 1040
authentication in greater detail. The above steps are common for all service 1041
requests and responses that need authentication, such as Steps 3, 4, and 7 in 1042
Figure 6. For simplicity sake, the sub-steps a ~ d are not repeated in the 1043
diagram for the latter messages. 1044

Step 3. After successfully authenticating the request, the inbound message handler 1045
proceeds to authorize the request. It MAY send a SAML authorization 1046
decision query to the Policy Decision Service (PDS), passing the resource 1047
identifier, the intended action, and supporting evidence such as the SAML 1048
assertion from the SOAP request. This message is also signed using the 1049
service provider’s private key for message authenticity and integrity 1050
protection. 1051

Step 4. The PDS evaluates the SAML query and makes a decision (permit / deny / 1052
indeterminate) based on the evidence and the access control policies of this 1053
trust domain. If necessary, the PDS may choose to obtain additional 1054
attributes for the user and the resource involved. The decision is sent back 1055
to the service provider in the form of a SAML authorization decision 1056
assertion within a signed SOAP response. 1057

*As mentioned before, in the future the handler may also choose to offload the validation step to the CVS in Step 2-d, but in this

release CVS only performs revocation status checking.

NCES Security Services Architecture

Version 0.3 32 February 20, 2004

 1058
Alternatively, if the service provider chooses to make the policy decision by 1059
itself, steps 3 and 4 are no longer necessary. In support of this, the SDK may 1060
request relevant XACML policies from the Policy Retrieval Service (PRS), 1061
shown as step “3-alt.” in the diagram. Further, policy retrieval can happen 1062
in advance and therefore does not have to be in the invocation path. 1063
 1064
It is worth noting, however, that the decision whether or not to use an 1065
external PDS may also depend on administration policies of the trust 1066
domain. 1067
 1068
Section 8 formally describes the policy based authorization architecture. 1069

Step 5. If access is authorized, the message handler forwards the original SOAP 1070
request to the target Web Service for processing. 1071

Step 6. The service processes the request and sends back a synchronous SOAP 1072
response. 1073

Step 7. When the response goes back through the message handlers, it is signed 1074
with the provider’s private key using identical steps shown for Step 2. 1075

Step 8. On the consumer side, after verifying the provider’s signature, the message 1076
handler passes the SOAP response to the edge application. 1077

 1078
6.2 Service Chaining* 1079

This basic invocation sequence may be easily extended to more complex usage 1080
scenarios. For instance, the Web Service may invoke another service on the user’s 1081
behalf. This so-called “service chaining” scenario is shown in Figure 8 below. 1082
 1083

* Note that this document differentiates between “Service Chaining” and “Service Routing”. The latter refers to a Web Service

request being forwarded through intermediaries, intact, to the target service.

NCES Security Services Architecture

Version 0.3 33 February 20, 2004

Security CESSecurity CES

Certificate
Validation

Service

Policy
Retrieval

Service

XKMS

Management
Console

Policy
Decision
Service

Key StoreKey Store

SAML-P XACML

Edge ApplicationEdge Application

W
SS

SOAP
Client

SOAP
Client

M
sg

H
an

dl
er

s

NCES SDK

1

3

2

Service Provider AService Provider A

Web
Service

Web
Service

Web
Service

Web
Service

M
es

sa
ge

 H
an

dl
er

s
(in

)

M
es

sa
ge

 H
an

dl
er

s
(o

ut
)

NCES SDKEd
ge

 U
se

r
Au

th
en

tic
at

io
n

Identity
Store

Identity
Store

Key StoreKey Store Key StoreKey Store

CRLCRL

0

7

Service Provider BService Provider B

Web
Service

Web
Service

Web
Service

Web
Service

M
es

sa
ge

 H
an

dl
er

s
(in

)

M
es

sa
ge

 H
an

dl
er

s
(o

ut
)

NCES SDK

Key StoreKey Store

4 5

8W
SS

6

Policy
Admin.
Service

Policy
Store

Policy
Store

Principal
Attribute
Service

Principal
Attribute
Service

Invocation Path “Out-of-band” Calls Signed MessageLEGEND

Security CESSecurity CES

Certificate
Validation

Service

Certificate
Validation

Service

Policy
Retrieval

Service

Policy
Retrieval

Service

XKMS

Management
Console

Policy
Decision
Service

Policy
Decision
Service

Key StoreKey Store

SAML-P XACML

Edge ApplicationEdge Application

W
SS

SOAP
Client

SOAP
Client

M
sg

H
an

dl
er

s

NCES SDK

1

3

2

Service Provider AService Provider A

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

M
es

sa
ge

 H
an

dl
er

s
(in

)

M
es

sa
ge

 H
an

dl
er

s
(o

ut
)

NCES SDKEd
ge

 U
se

r
Au

th
en

tic
at

io
n

Identity
Store

Identity
Store

Key StoreKey Store Key StoreKey Store

CRLCRL

0

7

Service Provider BService Provider B

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

M
es

sa
ge

 H
an

dl
er

s
(in

)

M
es

sa
ge

 H
an

dl
er

s
(o

ut
)

NCES SDK

Key StoreKey Store

4 5

8W
SS

6

Policy
Admin.
Service

Policy
Admin.
Service

Policy
Store

Policy
Store

Principal
Attribute
Service

Principal
Attribute
Service

Principal
Attribute
Service

Principal
Attribute
Service

Invocation Path “Out-of-band” Calls Signed MessageLEGEND Invocation Path “Out-of-band” Calls Signed MessageLEGEND 1084
Figure 8 - Service Chaining 1085

 1086
In this case, Service Provider A is also a consumer of Service Provider B, and acts as a 1087
SOAP client just like the edge application. The invocation steps in the diagram (Steps 0 1088
to 8, response path not numbered) are self-explanatory. 1089
 1090
From the authentication perspective, when Service Provider A makes a request to 1091
Provider B, two scenarios are possible: 1092
 1093
¾ In many cases, Provider A invokes B on behalf of the original end user. This 1094

would require Provider A to pass on the original SAML assertion in the second 1095
SOAP request, as opposed to creating a new one. Here Provider A “vouches for” 1096
the assertion by signing the message with its digital signature, even though it is 1097
not the issuer of the assertion. In the same way that Provider A authorized the 1098
first request, Provider B then needs to authorize the second request based on 1099
both its policies applicable to the end user AND its trust relationship with A. 1100

¾ Alternatively, Provider A may choose to invoke B on its own behalf. This is also 1101
not uncommon. For example, B may be a data service that provides “wholesale” 1102
data to a small handful of applications, and may be relying on them to deal with 1103
end user related access control policies. In this case, Provider A still needs to 1104
authenticate itself to B (e.g. via digital signatures), but no longer needs to pass on 1105
the originating user assertion. Provider B’s authorization decision will be based 1106
on A’s principal instead of the original user’s. 1107

NCES Security Services Architecture

Version 0.3 34 February 20, 2004

 1108
Both scenarios are supported under this architecture. The next two sections will 1109
examine them in much greater detail. 1110
 1111

1112

NCES Security Services Architecture

Version 0.3 35 February 20, 2004

7. AUTHENTICATION 1112

Because the subsequent sections involve more technical discussions in the SOAP 1113
messaging layer, it is necessary to adopt a set of consistent messaging terms so that their 1114
connotations can be clearly understood within the context of this document. In addition 1115
to Service Consumer and Service Provider, the following terms will be used: 1116
 1117
¾ Message sender and recipient. These terms are used in a point-to-point context 1118

and are only relevant to a particular SOAP message (either request or response). 1119
For example, a service consumer is a sender of a SOAP request message but a 1120
recipient of a response message. 1121

¾ Message originator. As discussed in Section 6.2, a Web Service request may be 1122
issued on behalf another system entity, either an end user or an application. This 1123
entity, if exists, is called the originator of the Web Service request of interest. 1124

 1125
These terms are illustrated in Figure 9 below: 1126
 1127

ConsumerConsumer ProviderProvider

SOAP Request

SOAP Response

Sender Recipient

SenderRecipient

User /
Application
/ Service

User /
Application
/ Service

Originator

ConsumerConsumer ProviderProvider

SOAP Request

SOAP Response

Sender Recipient

SenderRecipient

User /
Application
/ Service

User /
Application
/ Service

Originator

 1128
Figure 9 - Messaging Terms 1129

 1130
 1131
7.1 Asserting the Authentication of End Users 1132

In the scenario illustrated in Figure 6, the edge application is responsible for 1133
authenticating end users, which is shown as “Step 0” in the diagram. The exact 1134
mechanism and policies for this step depend on the actual portal server as well as the 1135
trust domain environment, therefore is not prescribed here. However, in order for 1136
downstream service providers to make authorization decisions, the user identity and 1137
the actual context under which the user is authenticated need to be propagated along 1138
with the Web Service request. 1139
 1140
In order to access downstream Web Services on an end user’s behalf, the edge 1141
application MUST provide a SAML assertion that includes the following information: 1142
 1143

NCES Security Services Architecture

Version 0.3 36 February 20, 2004

1. [REQUIRED] Issuer of the assertion is required by the SAML spec, which is the 1144
identity of the edge application itself; 1145

2. [REQUIRED] An assertion ID as required by the SAML spec; 1146

3. [REQUIRED] One Authentication Statement containing all of the following: 1147
 1148

¾ Timestamp of the authentication instant; 1149
¾ The authentication method (e.g. Client SSL, see the SAML spec for the exact 1150

URI values. Additional values will be defined later for DoD enterprise use); 1151
¾ The <Subject> element containing the user identifier, which includes both 1152

the naming scheme (e.g. “X.509SubjectName”) and the identifier (e.g. 1153
“CN=John Doe, OU=NCES, DC=DISA, DC=MIL”); 1154

¾ A <SubjectConfirmation> element within the <Subject> element that 1155
MUST use the “sender-vouches“ confirmation method as defined in the 1156
WS-Security SAML Token Profile [WSS-SAML]. Given our brokered trust 1157
model, the sender of the SOAP request is not necessarily the issuer of the 1158
assertion; therefore we can only trust the sender to vouch for the assertion 1159
statements. 1160

4. [OPTIONAL] Zero or more Attribute Statements describing any additional 1161
authentication context, in addition to the authentication method URI, that may 1162
be relevant to downstream access control decisions. For example, if the portal 1163
server is temporarily unable to check the user’s X.509 certificate status against the 1164
CRL but allows the user to log in regardless, such information should be made 1165
available to target service providers. Such attributes, if any, should be officially 1166
defined at the DoD enterprise level. 1167

5. [OPTIONAL] Zero or more Attribute Statements for additional user attributes 1168
(e.g. contact info, roles). Due to confidentiality and privacy concerns, such attributes 1169
should be “public” attributes of the user that are visible to all parties in the trust domain. 1170
Definition of such attributes is the responsibility of the trust domain (see also the Future 1171
Work section). 1172

 1173
An example of the assertion is shown in Appendix A.1. This assertion will be passed in 1174
the SOAP request message indicating that the request is made on the user’s behalf. 1175
 1176
The edge application MUST NOT sign the assertion alone, but rather sign it along with 1177
other elements in the request message including the SOAP body (see Section 7.2.1 for 1178
details). Signing the SAML assertion but not the request message would cause a serious 1179
security concern: Because there isn’t a signature that cryptographically binds the 1180
assertion and the request body, the request body could be tampered with during transit. 1181
Further, the signed assertion could potentially be hijacked for other unintended uses. 1182
Signed or not, an assertion may be hijacked regardless (that is, when there is no 1183
message confidentiality), but a signed assertion might give recipients a false sense of 1184
security. 1185

NCES Security Services Architecture

Version 0.3 37 February 20, 2004

7.2 SOAP Message Authentication 1186

Under this architecture, SOAP requests MUST be signed if the service provider requires 1187
authentication. The digital signature not only provides the ability to verify message 1188
integrity, but more importantly serves as the authentication mechanism as well. 1189
 1190
The message authentication handler (shown in Figure 7*) determines the authenticity of 1191
the message based on the following factors: 1192
 1193
¾ The digital signature for the message can be verified using the designated 1194

signature, digest, and canonicalization algorithms; 1195
¾ The identity of the message sender, represented by the certificate corresponding 1196

to the private key that was used to sign the message, can be validated. This 1197
involves a series of validation processing achieved jointly by the message 1198
handler and the Certificate Validation Service; 1199

¾ Uniqueness of the message can be determined. Because even a valid, signed 1200
SOAP message may be recorded and resent (a replay attack), WS-Security spec 1201
states “It is strongly RECOMMENDED that messages include digitally signed 1202
elements to allow message recipients to detect replays of the message…” (Section 1203
13.2) 1204

 1205
After authenticating the message sender, the handler creates a new SAML 1206
authentication assertion construct to capture this act. Note that this new assertion’s 1207
subject contains the sender’s identifier, whereas the assertion contained in the request 1208
message, if any, bears the subject of the originator (e.g. the end user). Both assertions 1209
may serve as relevant inputs to the policy enforcement and policy decision process, as 1210
depicted in Figure 10: 1211
 1212

*Figure 7 depicts the message authentication handler for a service provider, but the handler also necessary on the service

consumer side to authenticate response messages.

NCES Security Services Architecture

Version 0.3 38 February 20, 2004

Service ProviderService Provider

Web
Service

Web
Service

M
es

sa
ge

Au
th

en
tic

at
io

n
H

an
dl

er

M
es

sa
ge

Au
th

en
tic

at
io

n
H

an
dl

er

SOAP
Request

SOAP
Response

Po
lic

y
En

fo
rc

em
en

t
H

an
dl

er

Po
lic

y
En

fo
rc

em
en

t
H

an
dl

er
Certificate Validation Policy Decision

Originator
Assertion

Sender
Assertion

Originator
Assertion

Sender
Assertion

Originator
Assertion

Service ProviderService Provider

Web
Service

Web
Service

Web
Service

Web
Service

M
es

sa
ge

Au
th

en
tic

at
io

n
H

an
dl

er

M
es

sa
ge

Au
th

en
tic

at
io

n
H

an
dl

er

SOAP
Request

SOAP
Response

Po
lic

y
En

fo
rc

em
en

t
H

an
dl

er

Po
lic

y
En

fo
rc

em
en

t
H

an
dl

er
Certificate Validation Policy Decision

Originator
Assertion

Sender
Assertion

Originator
Assertion

Sender
Assertion

Originator
Assertion

 1213
Figure 10 - Message Authentication 1214

 1215
In the future, in order to support more sophisticated authorization policies in multi-hop 1216
service workflow / collaboration scenarios, the inputs to the policy decision will 1217
contain not only the originator assertion and the sender assertion, but the active 1218
intermediaries’ assertions as well, all as part of an “assertion chain”. 1219
 1220
The diagram also shows that this chain of assertions is made accessible to the Web 1221
Service application itself, e.g., via a SOAP message context in JAX-RPC based 1222
implementations. This is necessary because the business logic within the Web Service 1223
application often may need to rely on user and / or sender identity as well. 1224
 1225
Authenticating the message sender is crucial partly because the integrity of the any 1226
embedded assertions also depends on it. Fortunately, the WS-Security specification 1227
suite along with the XML-DSIG standard clearly defines the message signing syntax 1228
and semantics, which have been implemented in many existing commercial or open 1229
source toolkits. 1230
 1231
In this architecture, asymmetric message signing and verification using DoD PKI 1232
certificates is supported. The signed message has roughly the following structure: 1233
 1234
 1235

NCES Security Services Architecture

Version 0.3 39 February 20, 2004

SOAP Envelope

SOAP Header

<Sender X.509 Certificate>

<Timestamp>

<User SAML Assertion>

WS-Security Header

SOAP Body

<Service Request>

<Digital Signature>

WS-Addressing Headers

<Message ID>
<Message ID>

(: Covered by the signature)

SOAP Envelope

SOAP Header

<Sender X.509 Certificate>

<Timestamp>

<User SAML Assertion>

WS-Security Header

SOAP Body

<Service Request>

SOAP Body

<Service Request>

<Digital Signature>

WS-Addressing Headers

<Message ID>
<Message ID>

(: Covered by the signature)
 1236

Figure 11 - Signed SOAP Message 1237

 1238
As shown in Figure 11, the message sender’s signature covers both the header elements 1239
(except the signature itself) AND the SOAP body, making sure that none may be 1240
tampered or substituted in transit. 1241
 1242
This architecture hereby defines the following technical processing rules that 1243
implementations need to follow to ensure interoperability among services. These rules 1244
are based on the WS-Security core spec, the SAML spec, and the proposed WS-Security 1245
SAML Interoperability Scenarios draft document [WSS-SAML-I]. (Note: The following 1246
subsections are aimed at a technical audience and may be safely skipped for a high level 1247
understanding of the architecture.) 1248
 1249
7.2.1 Message Sender Processing Rules 1250

 1251
The following rules apply to the message sender: 1252
 1253

NCES Security Services Architecture

Version 0.3 40 February 20, 2004

1. The SOAP header MUST contain a WS-Addressing message ID element (i.e. 1254
<wsa:MessageID>) that contains a globally unique ID (e.g., randomly 1255
generated) for this SOAP message. This element is included here to help prevent 1256
replay attacks. The message ID element MUST contain the 1257
mustUnderstand=“1” attribute. 1258

2. The Security header MUST contain the mustUnderstand=“1” attribute. 1259

3. The Security header MUST contain a <wsse:BinarySecurityToken> that 1260
contains the message sender’s X.509v3 certificate*. The valueType attribute of 1261
the binary token must be “wsse:X509v3”. 1262

4. (For request messages only) When this message is sent on behalf of another 1263
principal, the Security header MUST contain the SAML assertion as defined in 1264
section 7.1. 1265

5. The Security header MUST contain a timestamp (i.e. <wsu:Timestamp>) as 1266
defined in the WS-Security spec. The timestamp MUST contain a 1267
<wsu:Created> element that records the message creation time relative to the 1268
sender’s clock. The timestamp MAY also contain a <wsu:Expires> element 1269
that represents the expiration of the message. As specified in WS-Security SOAP 1270
Message Security 1.0 document Section 10, all timestamps MUST be in the UTC 1271
format. This architecture further recommends that all timestamps SHOULD 1272
have the resolution of milliseconds. 1273

6. The SignatureMethod MUST be RSA-SHA1. The DigestMethod MUST be 1274
SHA-1. The CanonicalizationMethod MUST be Exclusive Canonicalization. 1275

7. The signature MUST contain references to the following elements using relative 1276
URI: 1277
¾ <wsa:MessageID> 1278

¾ <wsse:BinarySecurityToken> 1279

¾ <saml:Assertion>, if present 1280
¾ <wsu:Timestamp> 1281

¾ <soap:Body> 1282

8. The KeyInfo element MUST contain a security token reference to the sender’s 1283
X.509 certificate contained in the <wsse:BinarySecurityToken> element. 1284

 1285
Please refer to the respective specifications for more syntax and implementation details. 1286
 1287
Appendix A.2 contains a sample XML listing of a properly signed SOAP message. 1288
 1289

* Note that in the future, this will be relaxed to include any standard referencing mechanisms to the certificate, so that the

certificate need not be passed in every message.

NCES Security Services Architecture

Version 0.3 41 February 20, 2004

7.2.2 Message Recipient Processing Rules 1290
 1291
The following rules apply to the message recipient: 1292

1. The signed elements defined above MUST be verified against the signature using 1293
the specified algorithms and transforms and the public key from the sender’s 1294
certificate. 1295

2. The sender’s X.509 certificate MUST be validated. The validation may include, 1296
but not limited to, (1) it has not expired; (2) its CA chain can be validated against 1297
the trusted root; and (3) it has not been revoked based on checking the CRLs. 1298
Note that the handler may offload part or all of the certificate validation tasks to 1299
an external Certificate Validation Service, which is further discussed in Section 1300
10.2. 1301

3. The handler MUST check the Message ID for uniqueness in order to detect replay 1302
attacks. The handler SHOULD cache the Message ID for a configurable period of 1303
time. When message freshness is checked (see below), this period need not be 1304
longer than the freshness period. 1305

4. The handler SHOULD also check the timestamps for message freshness and 1306
discard messages with excessive delays. If the expiration timestamp is present, 1307
the handler SHOULD discard the message if it has passed the expiration. If the 1308
expiration timestamp is not present, the handler SHOULD use a “freshness” 1309
period instead and discard the message if the message creation timestamp is 1310
older than this period. The freshness period SHOULD be configurable by the 1311
recipient. For example, 5 minutes may be a good default value for interactive 1312
scenarios, but it may be considerably longer if asynchronous messaging 1313
transport or long network latencies are involved. As stated in the WS-Security 1314
spec, “The recipient MUST make an assessment of the level of trust to be placed 1315
in the requestor's clock.” To perform this step, it is RECOMMENDED that the 1316
machine clocks be synchronized (e.g., using the Network Time Protocol (NTP)). 1317

5. (For request messages only) The end user assertion element, if found in the request 1318
message, MUST be validated against standard SAML processing rules unless the 1319
service provider does not rely on it for authorization decisions. In addition, the 1320
issuer of the assertion SHOULD be checked against an “issuers list” in the trust 1321
domain. The implementation of this check may depend on the domain’s 1322
administrative policies. At the enterprise level, for example, the issuer may be 1323
required to be a valid and registered resource in the enterprise UDDI registry. 1324

6. (For request messages only) When the message signature is validated, the handler 1325
MUST create a new SAML authentication assertion for the message sender. The 1326
assertion MUST follow the rules defined in Section 7.1. 1327

7. (For request messages only) The message handler MUST make the sender’s 1328
authentication assertion and the end user’s assertion (if present) available to the 1329
Web Service application, either via a SOAP message context or in an API form. 1330

1331

NCES Security Services Architecture

Version 0.3 42 February 20, 2004

8. AUTHORIZATION 1331

8.1 Authorization Architecture 1332

Authorization is the means for ensuring that only properly authorized principals are 1333
able to access resources within a system. As defined previously, principals are actors 1334
within the system on whose behalf actions are taken. Principals can be human (a user) 1335
or machine (a system, service, or software process). It is worth noting that systems, 1336
services, and software processes may also be resources, and as such can exist as 1337
elements on both sides of an authorization request. For example, a service (principal) 1338
can request the invocation of another service (resource). Depending on the resource, 1339
the types of actions that are possible will also vary. Create, read, update, and delete are 1340
typical actions for a data resource. Start, stop, pause, and resume are actions that have 1341
no meaning in the context of a data resource, but are quite reasonable for a software 1342
process. For Web Services, actions are operations on the service as defined in its WSDL, 1343
and are therefore service-specific. 1344
 1345
All authorization inquiries have the same general form: Can {Principal X} perform 1346
{Action Y} on {Resource Z}? Authorization policy is the means for answering these 1347
inquiries. To be more precise, an authorization policy is a set of rules that can be 1348
evaluated in response to a request, to arrive at an authorization decision. Policies 1349
historically have taken many forms, from access control list (ACL) based to role based; 1350
they may be modeled quite differently from one system to another. Policies are an 1351
important topic and will be discussed in depth in Section 9. 1352
 1353
A solid authorization architecture, however, is concerned not just with policies. Rather, 1354
it covers the whole set of components, tools, and data that allows authorization 1355
decisions to be made and enforced. The goal of well-defined authorization architecture 1356
is to be flexible and extensible enough to accommodate a variety of principals, 1357
resources, actions and policies so that a wide range of business use scenarios and 1358
stakeholder requirements may be supported. 1359
 1360
Figure 12 below is a diagram of a generic authorization architecture that is adopted by 1361
this security architecture. Since the primary focus of this architecture is to provide 1362
authorization for the invocation of services, the diagram is tailored to that discussion. 1363
Therefore, the Policy Enforcement Point (PEP) is depicted between a service Consumer 1364
and a service Provider. The general framework, however, is equally valid for other 1365
authorization needs. The primary difference would be the location of Policy 1366
Enforcement and Policy Decision Points. 1367
 1368

NCES Security Services Architecture

Version 0.3 43 February 20, 2004

Principal
Attributes

Authorization
Policies

Consumer Provider

Policy Decision
Point (PDP)

Policy Admin.
Service

Policy Enforcement Point (PEP)

Identity Mgmt.
Service(s)

Request for Service Request for Service

Resource Attribute
Service(s) Environment

Attribute
Service(s)

Resource
Attributes Environment

Attributes

Attribute Admin. Services

LEGEND
Svc Message
Data Flow

Service
Repository

To Be Developed

Security Services
Layer

Security
Management Layer

Policy Retrieval
Service

Principal Attribute
Service(s)

Principal
Attributes

Authorization
Policies

Consumer Provider

Policy Decision
Point (PDP)

Policy Admin.
Service

Policy Enforcement Point (PEP)

Identity Mgmt.
Service(s)

Request for Service Request for Service

Resource Attribute
Service(s) Environment

Attribute
Service(s)

Resource
Attributes Environment

Attributes

Attribute Admin. Services

LEGEND
Svc Message
Data Flow

Service
Repository

To Be Developed

Security Services
Layer

Security
Management Layer

Policy Retrieval
Service

Principal Attribute
Service(s)

 1369
Figure 12 - Authorization Architecture 1370

 1371
The PEP is responsible for requesting authorization decisions and enforcing them. In 1372
essence, it is the point of presence for access control and must be able to intercept 1373
service requests between consumers and providers. For conceptual clarity, the diagram 1374
depicts the PEP as a single point. Physically, however, the PEPs would more likely be 1375
distributed throughout the system. It is also valid to have more than one PEP on a 1376
single message path. For instance, if the PEP was integrated as part of an application 1377
service gateway (perhaps within a firewall), it is quite reasonable to encounter more 1378
than one gateway, and therefore more than one PEP, between a consumer and a 1379
provider. The most important security engineering consideration for the 1380
implementation of a PEP is that the system must be designed such that the PEP cannot 1381
be bypassed in order to invoke a protected service. 1382
 1383

NCES Security Services Architecture

Version 0.3 44 February 20, 2004

8.2 Two Approaches for Making Policy Decisions 1384

Within the NCES architecture, each provider will incorporate an inbound SOAP 1385
message handler that will act as the PEP for all service invocations (see Figure 7 above). 1386
As discussed previously, the consumer will digitally sign all service requests such that 1387
the handler can verify the integrity of the message and authenticate the identity of the 1388
consumer. Once the message is verified, the handler, as the PEP, needs to make an 1389
authorization decision request to the PDP. Depending on its implementation 1390
preference, the service provider may use two approaches to perform the PDP function: 1391
 1392

1. Use an external PDP. 1393
 1394
Under this approach, the handler will formulate an Authorization Decision Query 1395
message to the Policy Decision Service (PDS), in accordance with the SAML Protocol 1396
(SAML-P) 1.1 standard. The handler will place any SAML assertions that were 1397
embedded within the header of the original message into the SAML-P Authorization 1398
Decision Query as <evidence> elements. Now acting as a consumer, the handler 1399
will digitally sign the query message with its digital identity before sending it to the 1400
PDS, similar to the process described in Section 7.2. Step 3 in Figure 6 illustrates this 1401
approach. An actual example of the SAML query (without the digital signature for 1402
simplicity) is shown in Appendix A.3. 1403
 1404
Authorization decision queries sent to the PDP MUST adhere to the following 1405
processing rules: 1406
 1407

¾ The query MUST specify the resource being accessed, using the Web Service’s 1408
QName as defined in its WSDL; 1409

¾ The query MUST specify the requested action on the resource, which is the Web 1410
Service operation; 1411

¾ If the request to the service provider was issued on an originator’s behalf*, the 1412
query’s <subject> element MUST carry the originator’s identifier, and the 1413
originator’s assertion MUST be added as the supporting <evidence>†; 1414

¾ Otherwise, the query’s <subject> element MUST carry the (immediate) sender’s 1415
identifier, and the assertion created by the message authentication handler for 1416
the service consumer MUST be added as <evidence>. 1417

 1418
Note that in this release, the policy decisions are based on one and only one 1419
principal. That is, if the query is on an originator’s behalf that is different from the 1420

* The originator may or may not be the end user, see Section 6.2
† The query MAY also contain additional attributes regarding principals. This alternative allows for the possibility that

principal attributes may be obtained prior to making an authorization decision query.

NCES Security Services Architecture

Version 0.3 45 February 20, 2004

immediate sender, the sender principal is ignored in the decision process. In the 1421
future, the decision may be further based on the principals of the sender as well as all other 1422
intermediaries involved in the invocation chain (see the Future Work section for more 1423
discussions on this topic). 1424
 1425
Upon receiving the authorization decision query, the PDS will parse it to determine 1426
the resource and action being requested. It will use this information to retrieve the 1427
appropriate policy from the Policy Retrieval Service (note: depending on whether or not 1428
the policy services are collocated, PDS may choose to directly retrieve policies from the policy 1429
store; the actual choice is up to the implementer). 1430
 1431
Additionally, the PDS may need to retrieve additional principal, resource, and/or 1432
environment attributes in order to evaluate the policy. As shown in Figure 6, the 1433
attributes may be retrieved from the respective Attribute Services. 1434
 1435
After the policy is evaluated, the result is rendered as either Permit, Deny, or 1436
Indeterminate, in the form of a SAML Authorization Decision Assertion. The 1437
assertion is returned to the requesting PEP using a standard SAML Protocol 1438
response message. This is shown as Step 4 in Figure 6 with an XML example in 1439
Appendix A.4. 1440

 1441
2. Perform the PDP function locally. 1442
 1443
Alternatively, the service Provider could choose to deploy a local PDP. In this case 1444
the PEP and PDP are essentially combined within a message handler, making the 1445
SAML query to the PDS unnecessary, but the policy evaluation process remains the 1446
same. 1447
 1448
To enforce enterprise policies, the PEP+PDP message handler will need to retrieve 1449
the appropriate policy from the Policy Retrieval Service, as well as necessary 1450
principal attributes from the Principal Attribute Service, just like the way PDS does 1451
it. The policy is returned using the standard XACML syntax. This is shown as Step 1452
3-alt. in Figure 6 and an example of a XACML policy is listed in Appendix A.5. 1453
 1454

The two approaches both have advantages and disadvantages. The external PDP 1455
relieves the service provider from the complexities of policy evaluation and policy 1456
retrieval, but an internal PDP may offer better performance and availability due to tight 1457
integration of PEP and PDP. The actual choice between an external vs. local PDP 1458
depends on the service provider as well as the trust domain policies it is required to 1459
satisfy; in fact the trust domain may have a mix of both approaches among different 1460
providers. 1461
 1462

NCES Security Services Architecture

Version 0.3 46 February 20, 2004

Regardless of the two approaches used, a service provider may need to implement 1463
additional security checks by itself. For example, a data service may need to filter a 1464
large number of data objects based on the consumer’s privileges before returning them 1465
in the SOAP response. This would be too inefficient for the PEP to do, as it involves 1466
examining the SOAP message payloads. In this scenario, the Web Service retrieves 1467
relevant principal attributes from the Principal Attribute Service as necessary, queries 1468
the Policy Retrieval Service to retrieve the relevant policy rules (in XACML syntax), and 1469
then applies the policies on top of the service level policy enforcement the message 1470
handler. 1471
 1472
8.3 Policy Decision Implementation Considerations 1473

No matter where it is located, the PDP may find it necessary to obtain more attributes to 1474
perform the policy evaluation and render a decision. Three possible processing options 1475
are described below: 1476
 1477

1. The PDS could immediately retrieve all attributes that are available from each of 1478
the attribute services prior to evaluating the policy in any fashion. Once all 1479
attributes have been retrieved, the policy is evaluated and the decision is 1480
rendered as Permit, Deny, or Indeterminate. 1481

2. The PDS could parse the policy inputs and determine whether all of the 1482
necessary attributes have been obtained. If not, the PDS could then initiate 1483
attribute requests to the appropriate attribute services to retrieve the needed 1484
information. Once all necessary attributes have been retrieved, the policy is 1485
evaluated and the decision is rendered as Permit, Deny, or Indeterminate. If any 1486
of the necessary attributes could not be retrieved, the decision is rendered as 1487
Indeterminate immediately. 1488

3. The PDS could attempt to evaluate the policy with the information it already 1489
has. If a Permit or Deny outcome is reached, the decision has been rendered. If 1490
the outcome is Indeterminate, the PDS would then initiate attribute requests to 1491
the appropriate attribute services – as specified in option 2. 1492

 1493
The choice of options will not impact the ultimate result of the policy evaluation. The 1494
choice is fundamentally an implementation decision that should be made based on 1495
performance optimization. The optimal choice will depend on the profile of 1496
authorization policies within a given system environment. One important 1497
consideration to be made is whether the PDS will support the Indeterminate decision 1498
result. The Indeterminate result is defined in the SAML standard as a method for a 1499
SAML authorization authority to positively affirm that it is unable to render a decision. 1500
Some reasons for why this result could occur include, a) the PDS cannot locate a policy 1501
for the specified resource within the domain’s Authorization Policy repository, b) one 1502
or more attribute values needed to evaluate the policy could not be retrieved, c) the PEP 1503
that sent the query is not recognized as a PEP within the domain, etc. Regardless of the 1504

NCES Security Services Architecture

Version 0.3 47 February 20, 2004

reason, the PDS MAY be configured to provide a Deny result in these cases. In this way, 1505
the PDS can remove any ambiguity on the part of the PEP for how to enforce the 1506
decision. 1507
 1508
Attribute Services are supporting services to the PDS. As discussed they provide 1509
information relative to Principals, Resources, and the trust domain Environment. As 1510
the name implies, Principal attributes are bound to a principal identity and could 1511
include values such as identity, aliases, email address, roles, communities of interest, 1512
clearance, formal access approvals, citizenship, organizational designator, office, phone 1513
number, etc. Resource attributes are those attributes associated with resource objects 1514
and could include a wide variety of metadata values such as resource identifier, type, 1515
provider, security label, hash or checksum, keywords, etc. Environment attributes are 1516
those attributes that are not associated with a principal or resource, but are still useful 1517
as part of an authorization policy. Examples of environment attributes could include 1518
values such as maximum security level, hours of operation, current time, geographic 1519
location, time zone, etc. These values may be common across a trust domain and 1520
therefore not treated as resource attributes. 1521
 1522
Attribute query messages will be formulated in accordance with the SAML-P spec. 1523
Likewise, each attribute service will respond in the form of a SAML attribute assertion 1524
contained in a SAML Protocol response. 1525
 1526
It is important to note that, attributes that are relevant to the policy decision process are 1527
sometimes sensitive information that needs to be protected. For example, it is critical to 1528
prevent principal attributes from being harvested by a rogue PDP for malicious 1529
purposes (e.g. data mining on users). Future versions of this architecture will address 1530
this issue. 1531

1532

NCES Security Services Architecture

Version 0.3 48 February 20, 2004

9. AUTHORIZATION POLICIES 1532

In the previous section, a normative authorization architecture was defined, with clearly 1533
defined component boundaries and standards-based message exchange mechanisms for 1534
policies and policy decisions. However, as mentioned earlier, the underlying 1535
authorization policies, managed by the Policy Administration Service, could take many 1536
forms and may differ from domain to domain or from one resource type to another. For 1537
this reason, it is the intention of this document to keep the policy management aspect of 1538
the authorization architecture non-normative, allowing domain-specific access control 1539
models to be plugged-in. In this section, a basic Role Based Access Control (RBAC) 1540
model is described, that SHOULD be adopted for authorizing Web Service invocations. 1541
In the future, this model may evolve to a broader attribute-based model that can 1542
accommodate policy decisions based on many attributes including roles. 1543
 1544
9.1 The RBAC Model 1545

To reiterate, authorization policy is the means for answering the query “Can {Principal 1546
X} perform {Action Y} on {Resource Z}? “ An access control list or ACL is a simple form 1547
of authorization policy found in most file management systems today. An ACL, for 1548
example, might specify that an explicit list of users may read a particular file. This is an 1549
example of identity based access control (IBAC). But access lists are difficult to 1550
maintain. Thus, other approaches have been devised such as role based access control 1551
(RBAC), where the identity of individual users is replaced in authorization policies by a 1552
role. In this way, roles can be assigned or unassigned to users without needing to 1553
modify the access policies themselves. 1554
 1555
The RBAC model has the following benefits: 1556
 1557
¾ Compared with IBAC, RBAC adds levels of indirection between identities and 1558

resources. Because permissions no longer need to be repeatedly assigned to 1559
individual users, RBAC scales much better and significantly reduces 1560
administration overheads. 1561

¾ RBAC is highly flexible and can have many variants with sophisticated features 1562
(e.g. role hierarchies, dynamic separate of duty constraints), making it possible to 1563
meet more complex business needs. 1564

¾ Compared with Mandatory Access Control (MAC) policies that are based on 1565
coarse labeling of subjects and objects, RBAC provides more granularity of 1566
assigning permissions, so that users are not granted (and hence use) more access 1567
than they need. 1568

¾ RBAC maps intuitively to the way business roles and responsibilities are 1569
managed, and is therefore easy to understand and use. 1570

 1571

NCES Security Services Architecture

Version 0.3 49 February 20, 2004

Because of these benefits, RBAC has become the prevalent access control model today 1572
and widely deployed a wide variety of systems and products. Its inherent flexibility, 1573
however, also resulted in the lack of general agreement on its definition and features, 1574
which has created uncertainty and confusion of its usage and meaning. Recently, a 1575
voluntary RBAC standard has been proposed by the National Institute of Standards and 1576
Technologies (NIST) to resolve this situation. The standard defines a “reference model” 1577
that formalizes RBAC features, and then describes the functional specifications of those 1578
features [RBAC]. 1579
 1580
For access control of Web Service invocations, we hereby describe a simple RBAC 1581
model that is consistent with the Core RBAC Reference Model defined in the NIST 1582
standard. The model is shown in Figure 13 below. 1583
 1584
 1585

PrincipalsPrincipals RolesRoles

PermissionsPermissions

ActionsActions ResourcesResources

Security
Contexts

Security
Contexts

Many-to-many
relationship

One-to-many
relationship

To be
developedLEGEND

PrincipalsPrincipals RolesRoles

PermissionsPermissions

ActionsActions ResourcesResources

Security
Contexts

Security
Contexts

Many-to-many
relationship

One-to-many
relationship

To be
developedLEGEND Many-to-many

relationship
One-to-many
relationship

To be
developedLEGEND

 1586
Figure 13 - Basic RBAC Model 1587

 1588
Technically, roles in this diagram are a means for many-to-many relationship between 1589
principals and permissions. However, it is important to note that roles should not be 1590
viewed simply as a technical mechanism for easier grouping of users or permissions. 1591
They should map to business meanings and responsibilities. As defined in the NIST 1592
standard, a role should be “a job function within the context of an organization with 1593
some associated semantics regarding the authority and responsibility conferred on the 1594
user.” In the NCES context, depending on whether the trust domain is an enterprise (or 1595
COI, or local) domain, enterprise (or COI, or local) roles SHOULD be clearly defined 1596
and centrally managed by the domain. 1597
 1598
Permissions in the above model represent approval to perform an action on one or more 1599
resources. Note that a resource (e.g. a Web Service) usually has multiple actions (e.g. 1600

NCES Security Services Architecture

Version 0.3 50 February 20, 2004

service operations defined in WSDL), while the same action may be applicable to 1601
multiple resources. For example, the “getAttribute” operation may be defined for 1602
Principal, Resource, and Environment Attribute Services. 1603
 1604
In the near future two additional features may be added to this basic model: 1605
 1606

1. Principal hierarchies. In a large scale business environment such as the DoD 1607
enterprise, there could be millions of users and other types of principals. For 1608
ease of administrative duties hierarchical groups of principals MAY be defined 1609
so that the number of principals assigned to a role doesn’t get out of control. For 1610
example, if 50 contractors from company A and 50 contractors from company B 1611
need to be assigned the “Demo User” role, adding 100 principals in the role 1612
membership list could be a very tedious job. It would be more convenient and 1613
more manageable to create two groups, “Company A contractors” and 1614
“Company B Contractors”, and then add the two groups under the role 1615
membership. When doing so, however, it is imperative to maintain the clear 1616
distinction between principal groups and roles. Principal groups are purely 1617
convenience constructs and should not have authorities and responsibilities 1618
directly attached to them. 1619

2. Context activated roles, also known as “session roles” in the NIST standard. 1620
Sessions are common in an enterprise environment. For example, an end-user 1621
logging in to a portal server from a thin client usually has a session or multiple 1622
sessions that last for a certain period of time. In the NCES architecture, sessions 1623
are generalized into a broader concept of security contexts, which not only exists 1624
in edge applications but spans service providers as well. Unlike user sessions 1625
which are primarily authentication oriented (so that users do not have to log in 1626
for every HTTP request), security contexts also have important authorization 1627
uses. In particular, it is sometimes desirable to allow only a subset of a user’s 1628
roles to exist under a certain context. For example, when a DoD employee works 1629
in the office, all his or her roles are activated to access the authorized business 1630
functions. When logging in from home, however, the employee may still be able 1631
to read news on the web portal, but the “Procurement Manager” role will not be 1632
activated to ensure that sensitive information cannot be accessed from 1633
unprotected computers. As shown in Figure 14, a principal may be associated 1634
with a set of security contexts and a security context may be associated with a 1635
subset of activated user roles. This feature provides further expressive power to 1636
the RBAC model. 1637

 1638
Under this model, authorization policies are naturally represented as rules that assign 1639
permissions to roles, as shown in Figure 14 below: 1640
 1641

NCES Security Services Architecture

Version 0.3 51 February 20, 2004

PrincipalsPrincipals RolesRoles

PermissionsPermissions

ActionsActions ResourcesResources

Security
Contexts

Security
Contexts

Many-to-many
relationship

One-to-many
relationship

Optional
featuresLEGEND

PoliciesPoliciesPolicy SetsPolicy Sets

Assigned to

PrincipalsPrincipals RolesRoles

PermissionsPermissions

ActionsActions ResourcesResources

Security
Contexts

Security
Contexts

Many-to-many
relationship

One-to-many
relationship

Optional
featuresLEGEND Many-to-many

relationship
One-to-many
relationship

Optional
featuresLEGEND

PoliciesPoliciesPolicy SetsPolicy Sets

Assigned to

 1642
Figure 14 - RBAC Based Policies 1643

 1644
As shown in the diagram, policies MUST be associated with roles, not directly with 1645
principals. Generally, for clarity and granularity sake, a policy SHOULD be assigned to 1646
one role. The policy MAY contain permissions for multiple resources, though. The 1647
actual XACML exchange format of the policy may vary depending on the actual query. 1648
For instance, if a XACML query is concerned with a specific action on a specific 1649
resource, then only that part of the policy concerning the requested action may be 1650
returned. 1651
 1652
9.2 Looking Ahead: the Attribute Based Approach 1653

Through the use of multiple roles, policies can be formed that satisfy more complex 1654
business needs. However, for even more complex needs, roles alone are inadequate to 1655
provide the desired flexibility. Within the federal government, particularly within the 1656
DoD and Intelligence communities, access control must also be based on the sensitivity 1657
of information. Whereas IBAC and RBAC are primarily discretionary access control 1658
(DAC) mechanisms, they are not best suited to address these mandatory access control 1659
(MAC) requirements. 1660
 1661
The goal of a well-engineered authorization framework is to be flexible enough to 1662
accommodate a variety of principals, resources, actions and policies such that it is 1663
extensible to a wide range of business use scenarios. In response to more complicated 1664

NCES Security Services Architecture

Version 0.3 52 February 20, 2004

business needs, authorization mechanisms have been migrating, slowly but inexorably, 1665
towards a more flexible attribute based approach. Since identities and roles can be 1666
viewed as nothing more than attributes of principals, both IBAC and RBAC can be 1667
wholly absorbed into an attribute-based mechanism. Attribute-based authorization 1668
policies have some distinct advantages over other approaches. First, an attribute-based 1669
approach recognizes from its inception that a flexible access control policy cannot be 1670
locked into evaluating only one dimension of a principal (such as an identity or role). 1671
For example, in order to provide proper controls for accessing classified information it 1672
is necessary to consider various other principal attributes such as clearance level, formal 1673
access approvals, or citizenship. Second, an attribute-based approach takes into 1674
consideration that there are other attributes that are relevant to authorization policies 1675
besides those associated with a principal, such as resource or environment attributes. 1676
 1677
The attribute-based approach will be explored in more detail in future versions of this 1678
document. 1679
 1680

1681

NCES Security Services Architecture

Version 0.3 53 February 20, 2004

10. OTHER TOPICS 1681

10.1 Message Confidentiality 1682

When required to counter identified threats, two general options are available to 1683
achieve confidentiality for service messages: 1684
 1685
¾ Rely on underlying communications security: Unencrypted SOAP messages 1686

may be acceptable if the underlying communications infrastructure provides 1687
adequate confidentiality to protect transmissions. Confidentiality can be 1688
provided at several layers of the communications stack; transport layer (e.g., SSL 1689
/ TLS), network layer (e.g., IPSEC, inline network encryptors), and physical / 1690
link layer (e.g., link encryptors). 1691

¾ Encrypted SOAP messages: Message encryption is recommended when 1692
transmission confidentiality is not provided. When XML-Encryption is used, the 1693
WS-Security processing logic within the SDK message handlers may also be 1694
responsible for encrypting and decrypting the SOAP message. 1695

 1696
These options are not mutually exclusive and therefore may be employed together as 1697
part of a defense-in-depth strategy. Using at least one of these options is recommended. 1698
Due to performance concerns involved in message level encryption, the transmission 1699
confidentiality techniques may be preferable in most situations in the near term. If 1700
message encryption is not employed, XML encryption may still be employed at the 1701
implementer’s discretion to provide confidentiality for elements within the body of a 1702
message (data confidentiality). 1703
 1704
10.2 Use of DoD PKI 1705

As described earlier, the Credential Management Services group of services provides 1706
the primary interface to the DoD PKI. The DoD PKI consists of the products and 1707
services that provide and manage X.509 certificates for public-key cryptography. 1708
Specific services provided by the DoD PKI include: 1709
 1710
¾ Key generation, storage, and recovery (encrypt / decrypt keys) 1711

¾ Certificate generation, update, renewal, rekey, and distribution 1712

¾ Certificate Revocation List (CRL) generation and distribution 1713

¾ Directory management of certificate related items 1714

¾ Certificate token initialization, programming, and management (NIPRnet) 1715

 1716
Since the Certification Validation Service (CVS) is the only service offered in the current 1717
architecture that is related to credential management, a few CVS related 1718
implementation issues are discussed below. 1719

NCES Security Services Architecture

Version 0.3 54 February 20, 2004

10.2.1 Revocation Status Checking vs. Full Certificate Validation 1720
 1721
As mentioned earlier in Section 4.5, a client (message handler) may delegate part or 1722
all of the certificate validation tasks to the CVS. Two reasonable alternatives are: (1) 1723
use the CVS to perform certificate revocation status checking, in which case the CVS 1724
functions similar to an OCSP responder, or (2) use the CVS to perform the entire 1725
certificate path validation. Both alternatives provide significant benefit to the 1726
message handler. By offloading revocation status checking to the CVS, the handlers 1727
do not need to download, store, maintain, and process certificate revocation lists 1728
(CRLs) for the entire PKI. Distribution of CRLs within an enterprise can be a very 1729
difficult and costly process. Within the DoD PKI, this process is further complicated 1730
by the extremely large size of many DoD CRLs. 1731
 1732
When the CVS performs the entire certificate validation process, the message 1733
handler is only responsible for verifying the digital signature of the message. The 1734
handler is relieved of the complexities of X.509 processing (e.g., certificate path 1735
construction, name subordination checking, full certificate parsing, certificate 1736
extension processing, as well as revocation status checking). This handler is also 1737
relieved of maintaining or locating many (or perhaps all – see 10.2.2) of the CA 1738
certificates and CRLs that are needed to build and validate certificate paths. In 1739
either case, the message handler (as the relying party) must be able to authenticate 1740
the CVS responses so that it can verify that they were sent from a responder that it 1741
trusts. This is most easily satisfied using signed responses, although not without 1742
some complications (see 10.2.2). 1743
 1744
Under the current architecture, service providers and consumers are REQUIRED to perform 1745
certificate path validation, but MAY rely on the CVS to provide certificate revocation status 1746
checking. Requests to and responses from the CVS MUST be in the form of a signed SOAP 1747
message as discussed in Section 7.2. 1748
 1749
The use of CVS for full certificate path validation is not currently supported, but 1750
remains an option under consideration for future releases. 1751

 1752
10.2.2 CVS Certificate Options 1753

 1754
In both cases described in the previous section, the CVS serves as a trust responder, 1755
whereby a message handler delegates some portion of its trust processing to the 1756
CVS, which it authenticates through a signed response. As such, the benefits are not 1757
gained without some trade-off of risk. More specifically, the message handler faces 1758
two options when authenticating the CVS response: it either chains the CVS 1759
certificate to a Root certificate, or explicitly trusts that certificate. 1760
 1761
1. Chaining to the Root 1762
 1763

NCES Security Services Architecture

Version 0.3 55 February 20, 2004

Without a trust responder, all end-entity certificates and CRLs are signed by either 1764
the Root CA or a subordinate CA issued from the Root. Therefore, a message 1765
handler can base its authentication on the ability to chain back to a Root certificate 1766
that it explicitly accepts as a trust anchor. With a trust responder it is possible to 1767
maintain this single trust anchor by using a certificate issued from within the PKI. 1768
However, in order to authenticate responses, the message handler would still need 1769
to perform certificate path validation including revocation checking for the 1770
responder. As a result, the message handler would need to maintain certificates for 1771
the Root CA and the subordinate CA that issued the responder’s certificate. It 1772
would also need to maintain the CRLs issued by the Root and subordinate CAs. To 1773
reduce this need, it is possible that trust responder certificates could be issued 1774
directly from the Root CA. This would be optimal from the standpoint of the 1775
message handler because responder certificates would chain directly to the Root, 1776
and only the Root CRL would be needed. However, this approach is not desirable 1777
from the standpoint of the DoD PKI for various policy and operational reasons. 1778
Moreover, since there is a potential need for many trust responders to exist across 1779
the enterprise, it would be better to issue these certificates from subordinate CAs. It 1780
is important to note that using an existing DoD CA is also not ideal due to the 1781
potentially large size of the CRL. 1782
 1783
Therefore, in order to maintain the Root CA as the single trust anchor, the best 1784
overall alternative would be to establish a subordinate CA under the Root dedicated 1785
to issuing only trust responder certificates – since this would allow the CRL for this 1786
CA to remain small (relative to the other DoD subordinate CAs.) 1787
 1788
2. Explicit trust of responders 1789
 1790
One way to maintain the full benefits of trust responders is to have each message 1791
handler explicitly trust the responder’s certificate as a trust anchor – similar to the 1792
way a Root certificate is trusted. In this way, the message handler can directly verify 1793
response message signatures, and does not need to perform any certificate path 1794
validation or revocation status checking for the responder itself. The only 1795
operational complexity this introduces is the need to distribute and trust the 1796
responder certificates to each message handler, which makes this option very 1797
attractive. However, explicit trust is not without its drawbacks. This approach 1798
introduces additional risk to the solution and therefore lowers overall security. The 1799
risk that is introduced relates to the potential compromise of the responder’s private 1800
key. 1801
 1802
Without explicit trust, the only trust anchor is the Root CA. The probability of 1803
compromising the DoD Root private key is virtually nil, since the Root CA is a 1804
standalone machine, and there are an extraordinary number of technical, physical, 1805
and procedural controls in place to prevent such a compromise. A trust responder, 1806

NCES Security Services Architecture

Version 0.3 56 February 20, 2004

by its very nature, must be connected to the network and up and running at all 1807
times. Therefore, probability of compromising the responder’s private key is 1808
substantially higher because the responder platform is susceptible to network attack. 1809
The impact of a responder compromise depends on the nature of the responder. 1810
Compromise of a revocation status responder allows an adversary to forge 1811
responses. The two potential results are a) the responder can potentially cause 1812
others to trust certificates that have been revoked by the PKI, or b) the responder can 1813
potentially cause all certificates to appear to be revoked, thus creating a denial of 1814
service. Compromise of a full certificate path validation responder is far more 1815
serious. Since the message handler delegates all validation to the responder, an 1816
adversary can cause any certificate to be trusted, regardless of its true origin or 1817
validity. This is functionally equivalent to a Root key compromise for any message 1818
handler that trusts that responder. 1819
 1820
One way to mitigate this risk is to employ a hardware cryptographic module at the 1821
responder (e.g., nCipher, Chrysalis) to provide strong protection for the private key. 1822
Another mitigation could be to limit the validity period of responder certificates to a 1823
reasonable period of time (e.g., 30 days). However, this would introduce the 1824
operational burden of periodically redistributing the certificate. 1825
 1826
There is no absolute requirement for the responder certificate to be issued from the 1827
PKI when using explicit trust. Since the certificate must be distributed as a trust 1828
anchor it is possible to use a self-signed certificate. However, using a certificate 1829
issued from the PKI is preferable since the distribution can be conducted in-band. 1830
Since there is no alternate means for validation of a self-signed certificate by 1831
implementers prior to installation as the trust anchor, it must be distributed via an 1832
out-of-band process. The only compelling reason to use a self-signed certificate 1833
would be if an appropriate certificate could not be obtained directly from a DoD PKI 1834
CA due to operational or policy constraints. 1835
 1836
Due to the complexity and operational requirements involved in setting up special 1837
subordinate CAs for CVS, we leave the second option for further discussions. 1838
 1839
In this version of the architecture, service consumers and providers are REQUIRED 1840
to explicitly trust the CVS’ certificate. They MUST validate the signed CVS 1841
responses using the pre-distributed CVS certificate. 1842

 1843
10.3 Beyond Trust Domain Boundaries 1844

A new set of security challenges arise when a service consumer attempts to invoke a 1845
service in a different trust domain, largely because the consumer and provider are 1846
governed by different authentication and authorization policies. Issues to consider may 1847
include the following: 1848

NCES Security Services Architecture

Version 0.3 57 February 20, 2004

 1849
¾ Trust domain federation. A trust relationship, governed by mutually agreed-1850

upon policies, must be established between the two domains before resource 1851
access can occur. The relationship is one-way by nature, but two domains may 1852
have mutual trust by establishing two one-way relationships; 1853

¾ Discovery of services in foreign domains. Service registries need to be aware of 1854
internal vs. external discoveries and exert different access controls on service 1855
visibility; 1856

¾ Mechanisms for exchanging user attributes. For example, the source domain 1857
may not be willing to release all user attributes to the target domain, and may 1858
choose to attach some “public” attributes along with the authentication assertion; 1859

¾ Federation of identities, when a principal has different identities and / or 1860
credentials in the two domains; 1861

¾ MLS concerns, when the two domains are not at the same security level; 1862
¾ PKI interoperability concerns, esp. if the two domains have different CA roots 1863

 1864
These topics are beyond the scope of this release and will be covered in future versions 1865
of the architecture. 1866
 1867

1868

NCES Security Services Architecture

Version 0.3 58 February 20, 2004

11. FUTURE WORK 1868

The following are identified as items that need to be addressed in future iterations of 1869
the architecture: 1870
 1871
1. Lack of target destination in a Web Service request. 1872

 1873
Because the identifier of the target service is not part of the SOAP protocol (SOAP 1874
lets underlying transport protocols such as HTTP to handle this), a Web Service 1875
request may potentially be hijacked and replayed to some other service provider 1876
that happens to support the same WSDL operation. A simple solution is to include a 1877
“target service URI” in the SOAP header, which is covered by the message 1878
signature. Currently emerging standards such as WS-Addressing [WSADDR] are 1879
addressing this problem; they be evaluated for use in this architecture in the future. 1880
 1881

2. Relay of trust in service chaining. 1882
 1883
As described in Section 7 and 8, a service provider’s authorization decision for an 1884
incoming service request is built on both the immediate sender of the message and 1885
the assertion of the end user on whose behalf the request is made. In the service 1886
chaining scenario, shown in Figure 8, assuming the requests are on the end user’s 1887
behalf, the sender of the message are no longer the issuer of the end user’s 1888
authentication assertion for the second and all following requests. This implies that 1889
a service provider will not accept the incoming request unless all intermediaries 1890
along the invocation path are trustworthy – that they haven’t intentionally tampered 1891
with and / or misused the original assertion. One potential risk lies in the 1892
possibility for an intermediary to hijack a valid user assertion and place that in 1893
malicious messages. This risk is not mitigated even if the original assertion is signed 1894
by the portal, because the downstream service provider still have to trust that the 1895
bindings between the assertion and the request bodies haven’t been tampered with 1896
by any of the intermediaries. 1897
 1898
This problem cannot be addressed by putting a target service URI in the original 1899
SOAP request, either, because in a dynamic service collaboration environment the 1900
final target service(s) may not be known when the original request is made. 1901
 1902
A possible solution is to include an “intended use” attribute in the original 1903
authentication assertion, which defines the boundary of this unit of work or business 1904
transaction, so that if the assertion is misplaced and use for some other purposes, the 1905
recipient of the message is able to detect and reject it. This approach needs to be 1906
further researched and defined. 1907
 1908

3. Richer policy decision semantics. 1909

NCES Security Services Architecture

Version 0.3 59 February 20, 2004

 1910
Future work in this area may include: 1911
 1912
¾ Attribute based policy models; 1913
¾ Making policy decisions based on not just the end user identity, but also on 1914

the principals of intermediaries in the invocation path; 1915
¾ Introducing resource and environment attributes as policy constraints; 1916
¾ Context activated roles, as mentioned in Section 9.1; 1917
¾ Introducing role hierarchies in the basic RBAC model; 1918
¾ Introducing static or dynamic Separation of Duty constraints into the basic 1919

RBAC model 1920
 1921

4. Security context establishment. 1922
 1923
There are some proposed standards that may address this issue, such as WS-Trust, 1924
WS-SecureConversation, and WS-Federation. 1925
 1926

5. Cross-trust domain service based collaboration. 1927
 1928
This is a challenging problem area with a lot of topics, including identity federation, 1929
cross-domain authentication and authorization, MLS support, etc. 1930
 1931

6. Content or data level security. 1932
 1933
That is, how we can better protect sensitive data in a SOA environment. This is of 1934
particular relevance to content discovery services. 1935
 1936

7. Integration with other net-centric enterprise services. 1937
 1938
Here we need to address the integration of the Security Services with Service 1939
Discovery, Enterprise Service Management (ESM), Messaging Services, and others. 1940
 1941

8. Definition of enterprise level security attributes and taxonomies. 1942
 1943
Before we can exchange identity, resource, and environment attributes among 1944
service providers (including NSS providers), we need to identify and define those 1945
attributes. This is also important to cross-domain security. 1946
 1947

9. Definition of enterprise auditing and logging services. 1948
 1949
They are essential for accountability in a brokered trust environment, esp. in the 1950
absence of positive mandatory access controls. 1951
 1952

NCES Security Services Architecture

Version 0.3 60 February 20, 2004

10. Protection of sensitive attributes. 1953
 1954
Principal and resource attributes need to be protected so that they cannot be 1955
harvested for data mining or other malicious purposes. 1956
 1957

11. Support for “thick” Clients. 1958
 1959
In addition to end users accessing enterprise services via a web portal from a web 1960
browser (“thin” client), there are other applications that are not web-based (e.g. Java 1961
desktop applications or legacy systems), but may also need to access the services. 1962
Authentication and authorization of such SOAP requests will be addressed later. 1963
 1964

1965

NCES Security Services Architecture

Version 0.3 61 February 20, 2004

A. MESSAGE EXAMPLES 1965

A.1 SAML Assertion Element Created by Portal 1966

<?xml version="1.0" encoding="UTF-8"?> 1967
<saml:Assertion 1968
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" 1969
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 1970
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 1971
 xsi:schemaLocation="urn:oasis:names:tc:SAML:1.0:assertion ..." 1972
 MajorVersion="1" 1973
 MinorVersion="1" 1974
 AssertionID="A4061B4E-61E9-200F-6115-209A56B8E384" 1975
 Issuer="mydomain\my_portal" 1976
 IssueInstant="2004-01-27T06:00:10Z"> 1977
 <saml:AuthenticationStatement 1978
 AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:X509-PKI" 1979
 AuthenticationInstant="2004-01-27T06:00:00Z"> 1980
 <saml:Subject> 1981
 <saml:NameIdentifier 1982
 Format="urn:oasis:names:tc:SAML:1.1:nameid-1983
format:X509SubjectName"> 1984
 CN=John Doe,OU=NCES,DC=DISA,DC=mil 1985
 </saml:NameIdentifier> 1986
 </saml:Subject> 1987
 </saml:AuthenticationStatement> 1988
</saml:Assertion> 1989
 1990

 1991
A.2 Signed SOAP Request 1992

<SOAP-ENV:Envelope 1993
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 1994
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" 1995
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 1996
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 1997
 xmlns:m0="http://echo.example.org/schema" 1998
 xmlns:wsu="http://schemas.xmlsoap.org/ws/2002/07/utility/" 1999
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing/"> 2000
 <SOAP-ENV:Header> 2001
 <!-- WS-Addressing Header --> 2002
 <wsa:MessageID wsu:Id="msgid">urn:A4061B4E-61E9-200F-6115-2003
209A56B8E384</wsa:MessageID> 2004
 <!-- WS-Security Header --> 2005
 <wsse:Security 2006
 xmlns:wsse="http://…/secext" 2007
 soapenv:mustUnderstand="true"> 2008
 <wsse:BinarySecurityToken 2009
 wsu:Id="binarytoken" 2010
 ValueType="wsse:X509v3" 2011
 EncodingType="wsse:Base64Binary"> 2012
 MIIEZzCCA9CgAwIBAgIQEmtJZc0… 2013
 </wsse:BinarySecurityToken> 2014
 <saml:Assertion 2015
 wsu:Id="samlassertion" 2016

NCES Security Services Architecture

Version 0.3 62 February 20, 2004

 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" 2017
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#" 2018
 xmlns:xsi="http://…/XMLSchema-instance" 2019
 xsi:schemaLocation="urn:oasis:names:tc:SAML:… …" 2020
 MajorVersion="1" 2021
 MinorVersion="1" 2022
 AssertionID="A4061B4E-61E9-200F-6115-209A56B8E384" 2023
 Issuer="example_domain\my_portal" 2024
 IssueInstant="2004-01-27T06:00:10Z"> 2025
 <saml:AuthenticationStatement 2026
 AuthenticationMethod="…:X509-PKI" 2027
 AuthenticationInstant="2004-01-27T06:00:00"> 2028
 <saml:Subject> 2029
 <saml:NameIdentifier 2030
 Format="…:…X509SubjectName"> 2031
 CN=John Doe,OU=NCES,DC=DISA,DC=mil 2032
 </saml:NameIdentifier> 2033
 </saml:Subject> 2034
 </saml:AuthenticationStatement> 2035
 </saml:Assertion> 2036
 <wsu:Timestamp wsu:Id="timestamp"> 2037
 <wsu:Created>2004-01-27T06:00:30Z</wsu:Created> 2038
 </wsu:Timestamp> 2039
 <!-- Digital Signature --> 2040
 <ds:Signature xmlns:ds="http://www.w3.org…/xmldsig#"> 2041
 <ds:SignedInfo> 2042
 <ds:CanonicalizationMethod 2043
 Algorithm="…/REC-xml-c14n-20010315"/> 2044
 <ds:SignatureMethod 2045
 Algorithm="…/xmldsig#rsa-sha1"/> 2046
 <ds:Reference URI="#msgid"> 2047
 … 2048
 </ds:Reference> 2049
 <ds:Reference URI="#binarytoken"> 2050
 … 2051
 </ds:Reference> 2052
 <ds:Reference URI="#samlassertion"> 2053
 … 2054
 </ds:Reference> 2055
 <ds:Reference URI="#timestamp"> 2056
 … 2057
 </ds:Reference> 2058
 <ds:Reference URI="#msgbody"> 2059
 … 2060
 </ds:Reference> 2061
 </ds:SignedInfo> 2062
 <ds:SignatureValue> 2063
 CwP3qte8VosbgUnQnF+… 2064
 </ds:SignatureValue> 2065
 <ds:KeyInfo> 2066
 <wsse:SecurityTokenReference> 2067
 <wsse:Reference URI="#binarytoken"/> 2068
 </wsse:SecurityTokenReference> 2069
 </ds:KeyInfo> 2070
 </ds:Signature> 2071
 </wsse:Security> 2072
 </SOAP-ENV:Header> 2073

NCES Security Services Architecture

Version 0.3 63 February 20, 2004

 <SOAP-ENV:Body wsu:Id="msgbody"> 2074
 <m:echo xmlns:m="http://echo.example.org"> 2075
 <m0:EchoString>Hello World</m0:EchoString> 2076
 <m0:NumEchoes>1</m0:NumEchoes> 2077
 </m:echo> 2078
 </SOAP-ENV:Body> 2079
</SOAP-ENV:Envelope> 2080

 2081
A.3 SAML-P Authorization Decision Query 2082

<?xml version="1.0" encoding="UTF-8"?> 2083
<soapenv:Envelope 2084
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 2085
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2086
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 2087
 <soapenv:Body> 2088
 <samlp:Request 2089
 IssueInstant="2004-01-31T13:00:58.287Z" 2090
 MajorVersion="1" MinorVersion="1" 2091
 RequestID="ID_2d10e285-42d4-4926-984e-fab8ea72d32a" 2092
 xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"> 2093
 <samlp:AuthorizationDecisionQuery 2094
 Resource="urn:mydomain:HelloWorldService"> 2095
 <saml:Subject 2096
 xmlns:saml="urn:…:SAML:1.0:assertion"> 2097
 <saml:NameIdentifier 2098
 Format="…:X509SubjectName" 2099
 NameQualifier="…"> 2100
 CN=John Doe,OU=NCES,DC=DISA,DC=mil 2101
 </saml:NameIdentifier> 2102
 </saml:Subject> 2103
 <saml:Action 2104
 xmlns:saml="urn:…:SAML:1.0:assertion"> 2105
 helloWorld 2106
 </saml:Action> 2107
 <saml:Evidence 2108
 xmlns:saml="urn:…:SAML:1.0:assertion"> 2109
 <saml:Assertion 2110
 AssertionID="…" 2111
 IssueInstant="…" 2112
 Issuer="…" 2113
 MajorVersion="1" MinorVersion="1"> 2114
 <saml:Conditions 2115
 NotBefore="…" 2116
 NotOnOrAfter="…"/> 2117
 <saml:AuthenticationStatement 2118
 AuthenticationInstant="…" 2119
 AuthenticationMethod="urn: 2120
oasis:names:tc:SAML:1.0:am:password"> 2121
 <saml:Subject> 2122
 <saml:NameIdentifier 2123
 Format="…" 2124
 NameQualifier="…"> 2125
 CN=John Doe, … 2126
 </saml:NameIdentifier> 2127
 </saml:Subject> 2128

NCES Security Services Architecture

Version 0.3 64 February 20, 2004

 </saml:AuthenticationStatement> 2129
 </saml:Assertion> 2130
 </saml:Evidence> 2131
 </samlp:AuthorizationDecisionQuery> 2132
 </samlp:Request> 2133
 </soapenv:Body> 2134
</soapenv:Envelope> 2135

 2136
A.4 SAML-P Authorization Decision Response 2137

<?xml version="1.0" encoding="UTF-8"?> 2138
<soapenv:Envelope 2139
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 2140
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2141
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 2142
 <soapenv:Body> 2143
 <samlp:Response 2144
 InResponseTo="ID_2d10e285-42d4-4926-984e-fab8ea72d32a" 2145
 IssueInstant="2004-01-30T21:59:38.409Z" 2146
 MajorVersion="1" MinorVersion="1" 2147
 ResponseID="ID_6e7e07bf-f02b-4535-ab9c-f19f7f31a3bf" 2148
 xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"> 2149
 <samlp:Status> 2150
 <samlp:StatusCode Value="samlp:Success"/> 2151
 </samlp:Status> 2152
 <saml:Assertion 2153
 AssertionID="…" 2154
 IssueInstant="2004-01-30T21:59:38.409Z" 2155
 Issuer="00268dd0-2f77-11d8-a14c-b8a03c50a862" 2156
 MajorVersion="1" MinorVersion="1" 2157
 xmlns:saml="urn:…:SAML:1.0:assertion"> 2158
 <saml:Conditions 2159
 NotBefore="2004-01-30T21:59:38.409Z" 2160
 NotOnOrAfter="2004-01-31T02:59:38.409Z"/> 2161
 <saml:AuthorizationDecisionStatement 2162
 Decision="Deny" 2163
 Resource="urn:mydomain:HelloWorldService"> 2164
 <saml:Subject> 2165
 <saml:NameIdentifier 2166
 Format="…:…X509SubjectName" 2167
 NameQualifier="…"> 2168
 CN=John Doe,OU=NCES,DC=DISA,DC=mil 2169
 </saml:NameIdentifier> 2170
 </saml:Subject> 2171
 <saml:Action>helloWorld</saml:Action> 2172
 </saml:AuthorizationDecisionStatement> 2173
 </saml:Assertion> 2174
 </samlp:Response> 2175
 </soapenv:Body> 2176
</soapenv:Envelope> 2177

 2178
A.5 XACML Policy Set 2179

<?xml version="1.0" encoding="UTF-8"?> 2180

NCES Security Services Architecture

Version 0.3 65 February 20, 2004

<PolicySet PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-2181
combining-algorithm:deny-overrides" PolicySetId="898b2a0f-6302-4b0a-2182
818c-c9c018b30116" xmlns="urn:oasis:names:tc:xacml:1.0:policy"> 2183
 <Target> 2184
 <Subjects> 2185
 <AnySubject xsi:type="xsd:string"/> 2186
 </Subjects> 2187
 <Resources> 2188
 <Resource> 2189
 <ResourceMatch 2190
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 2191
 <AttributeValue 2192
DataType="http://www.w3.org/2001/XMLSchema#string">b462ce60-3adc-11d8-2193
ba00-b8a03c50a862</AttributeValue> 2194
 <ResourceAttributeDesignator 2195
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 2196
DataType="http://www.w3.org/2001/XMLSchema#string" Issuer="00268dd0-2197
2f77-11d8-a14c-b8a03c50a862" MustBePresent="false"/> 2198
 </ResourceMatch> 2199
 </Resource> 2200
 </Resources> 2201
 <Actions> 2202
 <AnyAction xsi:type="xsd:string"/> 2203
 </Actions> 2204
 </Target> 2205
 <Policy PolicyId="0dea2874-ad60-4097-baf0-6d0184e96257" 2206
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-2207
algorithm:deny-overrides"> 2208
 <Target> 2209
 <Subjects> 2210
 <Subject> 2211
 <SubjectMatch 2212
MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal"> 2213
 <AttributeValue 2214
DataType="http://www.w3.org/2001/XMLSchema#anyURI">mydomain\john_doe</A2215
ttributeValue> 2216
 <SubjectAttributeDesignator 2217
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" 2218
DataType="http://www.w3.org/2001/XMLSchema#anyURI" Issuer="00268dd0-2219
2f77-11d8-a14c-b8a03c50a862" MustBePresent="false" 2220
SubjectCategory="user"/> 2221
 </SubjectMatch> 2222
 </Subject> 2223
 </Subjects> 2224
 <Resources> 2225
 <Resource> 2226
 <ResourceMatch 2227
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 2228
 <AttributeValue 2229
DataType="http://www.w3.org/2001/XMLSchema#string">b462ce60-3adc-11d8-2230
ba00-b8a03c50a862</AttributeValue> 2231
 <ResourceAttributeDesignator 2232
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 2233
DataType="http://www.w3.org/2001/XMLSchema#string" Issuer="00268dd0-2234
2f77-11d8-a14c-b8a03c50a862" MustBePresent="false"/> 2235
 </ResourceMatch> 2236
 </Resource> 2237

NCES Security Services Architecture

Version 0.3 66 February 20, 2004

 </Resources> 2238
 <Actions> 2239
 <Action> 2240
 <ActionMatch 2241
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 2242
 <AttributeValue 2243
DataType="http://www.w3.org/2001/XMLSchema#string">4e7336b8-bada-44cd-2244
8052-4d811945ad36</AttributeValue> 2245
 <ActionAttributeDesignator 2246
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" 2247
DataType="http://www.w3.org/2001/XMLSchema#string" Issuer="00268dd0-2248
2f77-11d8-a14c-b8a03c50a862" MustBePresent="false"/> 2249
 </ActionMatch> 2250
 </Action> 2251
 </Actions> 2252
 </Target> 2253
 </Policy> 2254
 <Policy PolicyId="50814dcc-9566-4cc6-8e5f-bf8070f48d45" 2255
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-2256
algorithm:deny-overrides"> 2257
 <Target> 2258
 <Subjects> 2259
 <Subject> 2260
 <SubjectMatch 2261
MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal"> 2262
 <AttributeValue 2263
DataType="http://www.w3.org/2001/XMLSchema#anyURI">CN=John 2264
Doe,OU=NCES,DC=DISA,DC=mil</AttributeValue> 2265
 <SubjectAttributeDesignator 2266
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" 2267
DataType="http://www.w3.org/2001/XMLSchema#anyURI" Issuer="00268dd0-2268
2f77-11d8-a14c-b8a03c50a862" MustBePresent="false" 2269
SubjectCategory="user"/> 2270
 </SubjectMatch> 2271
 </Subject> 2272
 </Subjects> 2273
 <Resources> 2274
 <Resource> 2275
 <ResourceMatch 2276
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 2277
 <AttributeValue 2278
DataType="http://www.w3.org/2001/XMLSchema#string">b462ce60-3adc-11d8-2279
ba00-b8a03c50a862</AttributeValue> 2280
 <ResourceAttributeDesignator 2281
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 2282
DataType="http://www.w3.org/2001/XMLSchema#string" Issuer="00268dd0-2283
2f77-11d8-a14c-b8a03c50a862" MustBePresent="false"/> 2284
 </ResourceMatch> 2285
 </Resource> 2286
 </Resources> 2287
 <Actions> 2288
 <Action> 2289
 <ActionMatch 2290
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 2291
 <AttributeValue 2292
DataType="http://www.w3.org/2001/XMLSchema#string">88cf4686-a73e-457b-2293
b723-81de192876c4</AttributeValue> 2294

NCES Security Services Architecture

Version 0.3 67 February 20, 2004

 <ActionAttributeDesignator 2295
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" 2296
DataType="http://www.w3.org/2001/XMLSchema#string" Issuer="00268dd0-2297
2f77-11d8-a14c-b8a03c50a862" MustBePresent="false"/> 2298
 </ActionMatch> 2299
 </Action> 2300
 </Actions> 2301
 </Target> 2302
 </Policy> 2303
 <Policy PolicyId="ab693163-002d-4419-a778-221e47981032" 2304
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-2305
algorithm:deny-overrides"> 2306
 <Target> 2307
 <Subjects> 2308
 <Subject> 2309
 <SubjectMatch 2310
MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal"> 2311
 <AttributeValue 2312
DataType="http://www.w3.org/2001/XMLSchema#anyURI">CN=John 2313
Doe,OU=NCES,DC=DISA,DC=mil</AttributeValue> 2314
 <SubjectAttributeDesignator 2315
AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" 2316
DataType="http://www.w3.org/2001/XMLSchema#anyURI" Issuer="00268dd0-2317
2f77-11d8-a14c-b8a03c50a862" MustBePresent="false" 2318
SubjectCategory="user"/> 2319
 </SubjectMatch> 2320
 </Subject> 2321
 </Subjects> 2322
 <Resources> 2323
 <Resource> 2324
 <ResourceMatch 2325
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 2326
 <AttributeValue 2327
DataType="http://www.w3.org/2001/XMLSchema#string">b462ce60-3adc-11d8-2328
ba00-b8a03c50a862</AttributeValue> 2329
 <ResourceAttributeDesignator 2330
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id" 2331
DataType="http://www.w3.org/2001/XMLSchema#string" Issuer="00268dd0-2332
2f77-11d8-a14c-b8a03c50a862" MustBePresent="false"/> 2333
 </ResourceMatch> 2334
 </Resource> 2335
 </Resources> 2336
 <Actions> 2337
 <Action> 2338
 <ActionMatch 2339
MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal"> 2340
 <AttributeValue 2341
DataType="http://www.w3.org/2001/XMLSchema#string">b083caca-27c5-422a-2342
a7fb-8a6c4ac860ef</AttributeValue> 2343
 <ActionAttributeDesignator 2344
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id" 2345
DataType="http://www.w3.org/2001/XMLSchema#string" Issuer="00268dd0-2346
2f77-11d8-a14c-b8a03c50a862" MustBePresent="false"/> 2347
 </ActionMatch> 2348
 </Action> 2349
 </Actions> 2350
 </Target> 2351

NCES Security Services Architecture

Version 0.3 68 February 20, 2004

 </Policy> 2352
</PolicySet> 2353
 2354

2355

NCES Security Services Architecture

Version 0.3 69 February 20, 2004

B. REFERENCES 2355

[ANISH] Anish Bhimani, Web Services – Not So Fast, in Information Security,
October 2002 issue.
http://www.infosecuritymag.com/2002/oct/webservices.html

[DOTNET] Microsoft .NET Web Services Enhancements (WSE) 1.0 Development
Guide

[JAXRPC] Java API for XML-Based RPC (JAX-RPC) Specification 1.0
http://java.sun.com/xml/jaxrpc/docs.html

[LA-ARCH] Liberty Architecture Overview, Version 1.1, January 15, 2003.
http://www.projectliberty.org/specs/archive/v1_1/index.html

[RBAC] NIST Role Based Access Control (RBAC) Standard, Draft 4/4/2003,
available at: http://csrc.nist.gov/rbac

[RFC2119] S. Bradner. Key words for use in RFCs to Indicate Requirement Levels.
IETF RFC 2119, March 1997. http://www.ietf.org/rfc/rfc2119.txt

[RFC2828] RFC 2828, Internet Security Glossary
http://www.ietf.org/rfc/rfc2828.txt

[SAML] Security Assertion Markup Language
http://www.oasis-open.org/committees/security/#documents

[SIMWEB] Stephen Dill et al., Self-Similarity in the Web, ACM Transactions on
Internet Technology, Vol. 2, No. 3, August 2002, pp.205-223

[SOAP] Simple Object Access Protocol 1.1
http://www.w3.org/TR/SOAP/

[WS-ADDR] Web Services Addressing (WS-Addressing) specification, http://www-
106.ibm.com/developerworks/webservices/library/ws-add/

[WS-GLOS] Web Service Glossary
http://www.w3.org/TR/ws-gloss/

[WS-I] WS-Interoperability Initiative
http://www.ws-i.org/

[WSS] Web Services Security: SOAP Message Security Spec 1.0 (Community
Draft), http://www.oasis-open.org/apps/org/workgroup/wss/

[WSS-SAML] Web Services Security: SAML Token Profile (Draft 08, 12/16/2003),
http://www.oasis-open.org/apps/org/workgroup/wss/

[WSS-SAML-
I]

Web Services Security: SAML Interop 1 Scenarios (Draft 4, 01/30/2004),
http://www.oasis-open.org/apps/org/workgroup/wss/

[WS-SC] Web Services Secure Conversation Language (WS-SecureConversation),
version 1.0, Dec 18, 2002
http://msdn.microsoft.com/ws/2002/12/ws-secure-conversation/

[WSSTP] WS-Security SAML Token Profile, Working Draft 06, Feb. 21, 2003
http://www.oasis-open.org/committees/wss/documents/WSS-SAML-
06.pdf

[WST] Web Services Trust Language (WS-Trust), version 1.0, Dec 18, 2002
http://msdn.microsoft.com/ws/2002/12/ws-trust/

NCES Security Services Architecture

Version 0.3 70 February 20, 2004

[XACML] XML Access Control Markup Language (XACML), Version 1.1,
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

[XKMS] XML Key Management Specification
http://www.w3.org/TR/xkms

[XMLDSIG] XML Signatures Syntax and Processing
http://www.w3.org/TR/xmldsig-core/

[XMLENC] XML Encryption Syntax and Processing
http://www.w3.org/TR/xmlenc-core/

 2356

